Soit le groupe d’Heisenberg de dimension topologique . On montre que si est impair, le couple d’espaces métriques ne possède pas la propriété d’extension lipschitzienne.
Let be the Heisenberg group of topological dimension . We prove that if is odd, the pair of metric spaces does not have the Lipschitz extension property.
Révisé le :
Accepté le :
Publié le :
Keywords: Heisenberg group, Lipschitz extension property
Mot clés : Groupe d’Heisenberg, propriété d’extension lipschitzienne
@article{AIF_2016__66_4_1653_0, author = {Balogh, Zolt\'an M. and Lang, Urs and Pansu, Pierre}, title = {Lipschitz extensions of maps between {Heisenberg} groups}, journal = {Annales de l'Institut Fourier}, pages = {1653--1665}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {4}, year = {2016}, doi = {10.5802/aif.3046}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3046/} }
TY - JOUR AU - Balogh, Zoltán M. AU - Lang, Urs AU - Pansu, Pierre TI - Lipschitz extensions of maps between Heisenberg groups JO - Annales de l'Institut Fourier PY - 2016 SP - 1653 EP - 1665 VL - 66 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3046/ DO - 10.5802/aif.3046 LA - en ID - AIF_2016__66_4_1653_0 ER -
%0 Journal Article %A Balogh, Zoltán M. %A Lang, Urs %A Pansu, Pierre %T Lipschitz extensions of maps between Heisenberg groups %J Annales de l'Institut Fourier %D 2016 %P 1653-1665 %V 66 %N 4 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.3046/ %R 10.5802/aif.3046 %G en %F AIF_2016__66_4_1653_0
Balogh, Zoltán M.; Lang, Urs; Pansu, Pierre. Lipschitz extensions of maps between Heisenberg groups. Annales de l'Institut Fourier, Tome 66 (2016) no. 4, pp. 1653-1665. doi : 10.5802/aif.3046. http://www.numdam.org/articles/10.5802/aif.3046/
[1] Optimal mass transportation in the Heisenberg group, J. Funct. Anal., Volume 208 (2004) no. 2, pp. 261-301 | DOI
[2] Rectifiability and Lipschitz extensions into the Heisenberg group, Math. Z., Volume 263 (2009) no. 3, pp. 673-683 | DOI
[3] An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem, Progress in Mathematics, 259, Birkhäuser Verlag, Basel, 2007, xvi+223 pages
[4] Degree theory in analysis and applications, Oxford Lecture Series in Mathematics and its Applications, 2, The Clarendon Press, Oxford University Press, New York, 1995, viii+211 pages (Oxford Science Publications)
[5] Über die zusammenziehende und Lipschitzsche Transformationen., Fundam. Math., Volume 22 (1934), pp. 77-108
[6] Extensions of Lipschitz maps into Hadamard spaces, Geom. Funct. Anal., Volume 10 (2000) no. 6, pp. 1527-1553 | DOI
[7] Kirszbraun’s theorem and metric spaces of bounded curvature, Geom. Funct. Anal., Volume 7 (1997) no. 3, pp. 535-560 | DOI
[8] Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions, Int. Math. Res. Not. (2005) no. 58, pp. 3625-3655 | DOI
[9] Degree theory, Cambridge University Press, Cambridge-New York-Melbourne, 1978, vi+172 pages (Cambridge Tracts in Mathematics, No. 73)
[10] The coarea formula for real-valued Lipschitz maps on stratified groups, Math. Nachr., Volume 278 (2005) no. 14, pp. 1689-1705 | DOI
[11] Extension of range of functions, Bull. Amer. Math. Soc., Volume 40 (1934) no. 12, pp. 837-842 | DOI
[12] Some properties of Carnot-Carathéodory balls in the Heisenberg group, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., Volume 11 (2000) no. 3, p. 155-167 (2001)
[13] Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2), Volume 129 (1989) no. 1, pp. 1-60 | DOI
[14] Lipschitz non-extension theorems into jet space Carnot groups, Int. Math. Res. Not. IMRN (2010) no. 18, pp. 3633-3648 | DOI
[15] A Lipschitz condition preserving extension for a vector function, Amer. J. Math., Volume 67 (1945), pp. 83-93
[16] Lipschitz extensions into jet space Carnot groups, Math. Res. Lett., Volume 17 (2010) no. 6, pp. 1137-1149 | DOI
Cité par Sources :