Nous donnons une démonstration élémentaire du lemme de Rokhlin pour les transformations non inversibles commutantes préservant la mesure, et nous présentons des applications combinatoires.
We give an elementary proof of a generalization of Rokhlin’s lemma for commuting non-invertible measure-preserving transformations, and we present several combinatorial applications.
Révisé le :
Accepté le :
Publié le :
Keywords: Rokhlin’s lemma, commuting endomorphisms, linear equations
Mot clés : Lemme de Rokhlin, endomorphismes commutants, équations linéaires.
@article{AIF_2016__66_4_1529_0, author = {Avila, Artur and Candela, Pablo}, title = {Towers for commuting endomorphisms, and combinatorial applications}, journal = {Annales de l'Institut Fourier}, pages = {1529--1544}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {4}, year = {2016}, doi = {10.5802/aif.3042}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3042/} }
TY - JOUR AU - Avila, Artur AU - Candela, Pablo TI - Towers for commuting endomorphisms, and combinatorial applications JO - Annales de l'Institut Fourier PY - 2016 SP - 1529 EP - 1544 VL - 66 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3042/ DO - 10.5802/aif.3042 LA - en ID - AIF_2016__66_4_1529_0 ER -
%0 Journal Article %A Avila, Artur %A Candela, Pablo %T Towers for commuting endomorphisms, and combinatorial applications %J Annales de l'Institut Fourier %D 2016 %P 1529-1544 %V 66 %N 4 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.3042/ %R 10.5802/aif.3042 %G en %F AIF_2016__66_4_1529_0
Avila, Artur; Candela, Pablo. Towers for commuting endomorphisms, and combinatorial applications. Annales de l'Institut Fourier, Tome 66 (2016) no. 4, pp. 1529-1544. doi : 10.5802/aif.3042. http://www.numdam.org/articles/10.5802/aif.3042/
[1] Measure theory. Vol. II, Springer-Verlag, Berlin, 2007, xiv+575 pages | DOI
[2] Sequences of integers with missing differences, J. Combinatorial Theory Ser. A, Volume 14 (1973), pp. 281-287
[3] Entropie d’un groupe abélien de transformations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, Volume 25 (1972/73), pp. 11-30
[4] Ergodic theory, Grundlehren der Mathematischen Wissenschaften, 245, Springer-Verlag, New York, 1982, x+486 pages | DOI
[5] Sums of dilates in , Combin. Probab. Comput., Volume 22 (2013) no. 2, pp. 282-293 | DOI
[6] Rokhlin’s lemma for non-invertible maps, Dynam. Systems Appl., Volume 10 (2001) no. 2, pp. 201-213
[7] An outline of ergodic theory, Cambridge Studies in Advanced Mathematics, 122, Cambridge University Press, Cambridge, 2010, viii+174 pages | DOI
[8] Commuting measure-preserving transformations, Israel J. Math., Volume 12 (1972), pp. 161-173
[9] Some old and new Rokhlin towers, Chapel Hill Ergodic Theory Workshops (Contemp. Math.), Volume 356, Amer. Math. Soc., Providence, RI, 2004, pp. 145-169 | DOI
[10] Tiling the line with translates of one tile, Invent. Math., Volume 124 (1996) no. 1-3, pp. 341-365 | DOI
[11] Ergodic theory, Cambridge Studies in Advanced Mathematics, 2, Cambridge University Press, Cambridge, 1989, xii+329 pages (Corrected reprint of the 1983 original)
[12] A “general” measure-preserving transformation is not mixing, Dokl. Akad. Nauk SSSR, n. Ser., Volume 60 (1948), pp. 349-351
[13] Additive combinatorics, Cambridge Studies in Advanced Mathematics, 105, Cambridge University Press, Cambridge, 2006, xviii+512 pages | DOI
[14] On the work of V. A. Rokhlin in ergodic theory, Ergodic Theory Dynam. Systems, Volume 9 (1989) no. 4, pp. 619-627 | DOI
[15] Circular chromatic number: a survey, Discrete Math., Volume 229 (2001) no. 1-3, pp. 371-410 (Combinatorics, graph theory, algorithms and applications) | DOI
Cité par Sources :