La méthode des champs de Klainerman joue un rôle essentiel dans l’étude de l’existence globale de solutions d’équations aux dérivées partielles hyperboliques non-linéaires à données petites, régulières, décroissantes à l’infini. Toutefois, certaines équations issues de la physique, comme l’équation des ondes de gravité en profondeur finie, ne possèdent pas de champ de Klainerman. Le but de cet article est de développer, sur une équation modèle, un substitut à la méthode des champs de Klainerman, qui permette d’obtenir des résultats d’existence globale, même dans le cas critique pour lequel il n’y a pas diffusion linéaire à l’infini. L’idée essentielle est d’utiliser des opérateurs pseudo-différentiels semi-classiques au lieu de champs de vecteurs, combinés avec une méthode de formes locales microlocale, afin de réduire la non-linéarité à des expressions pour lesquelles une règle de Leibniz est valable pour de tels opérateurs.
The method of Klainerman vector fields plays an essential role in the study of global existence of solutions of nonlinear hyperbolic PDEs, with small, smooth, decaying Cauchy data. Nevertheless, it turns out that some equations of physics, like the one dimensional water waves equation with finite depth, do not possess any Klainerman vector field. The goal of this paper is to design, on a model equation, a substitute to the Klainerman vector fields method, that allows one to get global existence results, even in the critical case for which linear scattering does not hold at infinity. The main idea is to use semiclassical pseudodifferential operators instead of vector fields, combined with microlocal normal forms, to reduce the nonlinearity to expressions for which a Leibniz rule holds for these operators.
Accepté le :
Publié le :
Keywords: Global solution of Klein-Gordon equations, Klainerman vector fields, Microlocal normal forms, Semiclassical analysis
Mot clés : Solutions globales d’équations de Klein-Gordon, champs de Klainerman, formes normales microlocales, analyse semi-classique
@article{AIF_2016__66_4_1451_0, author = {Delort, Jean-Marc}, title = {Semiclassical microlocal normal forms and global solutions of modified one-dimensional {KG} equations}, journal = {Annales de l'Institut Fourier}, pages = {1451--1528}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {4}, year = {2016}, doi = {10.5802/aif.3041}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3041/} }
TY - JOUR AU - Delort, Jean-Marc TI - Semiclassical microlocal normal forms and global solutions of modified one-dimensional KG equations JO - Annales de l'Institut Fourier PY - 2016 SP - 1451 EP - 1528 VL - 66 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3041/ DO - 10.5802/aif.3041 LA - en ID - AIF_2016__66_4_1451_0 ER -
%0 Journal Article %A Delort, Jean-Marc %T Semiclassical microlocal normal forms and global solutions of modified one-dimensional KG equations %J Annales de l'Institut Fourier %D 2016 %P 1451-1528 %V 66 %N 4 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.3041/ %R 10.5802/aif.3041 %G en %F AIF_2016__66_4_1451_0
Delort, Jean-Marc. Semiclassical microlocal normal forms and global solutions of modified one-dimensional KG equations. Annales de l'Institut Fourier, Tome 66 (2016) no. 4, pp. 1451-1528. doi : 10.5802/aif.3041. http://www.numdam.org/articles/10.5802/aif.3041/
[1] Global solutions and asymptotic behavior for two dimensional gravity water waves (2016) (to appear in Ann. Sci. École Norm. Sup)
[2] Sobolev estimates for two dimensional gravity water waves (2016) (to appear in Astérique)
[3] Existence globale et comportement asymptotique pour l’équation de Klein-Gordon quasi linéaire à données petites en dimension 1, Ann. Sci. École Norm. Sup. (4), Volume 34 (2001) no. 1, pp. 1-61 | DOI
[4] Erratum: “Existence globale et comportement asymptotique pour l’équation de Klein-Gordon quasi linéaire à données petites en dimension 1” [Ann. Sci. École Norm. Sup. (4) 34 (2001), no. 1, 1–61;], Ann. Sci. École Norm. Sup. (4), Volume 39 (2006) no. 2, pp. 335-345 | DOI
[5] Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, 268, Cambridge University Press, Cambridge, 1999, xii+227 pages | DOI
[6] Space-time resonances, Journées Équations aux dérivées partielles 2010 (Exp. No. 8)
[7] Global existence for coupled Klein-Gordon equations with different speeds, Ann. Inst. Fourier (Grenoble), Volume 61 (2012) no. 6, pp. 2463-2506 | DOI
[8] Global solutions for 3D quadratic Schrödinger equations, Int. Math. Res. Not. IMRN (2009) no. 3, pp. 414-432 | DOI
[9] Global solutions for 2D quadratic Schrödinger equations, J. Math. Pures Appl. (9), Volume 97 (2012) no. 5, pp. 505-543 | DOI
[10] Global solutions for the gravity water waves equation in dimension 3, Ann. of Math. (2), Volume 175 (2012) no. 2, pp. 691-754 | DOI
[11] Scattering theory for the Gross-Pitaevskii equation in three dimensions, Commun. Contemp. Math., Volume 11 (2009) no. 4, pp. 657-707 | DOI
[12] On the modified Korteweg-de Vries equation, Math. Phys. Anal. Geom., Volume 4 (2001) no. 3, pp. 197-227 | DOI
[13] Quadratic nonlinear Klein-Gordon equation in one dimension, J. Math. Phys., Volume 53 (2012) no. 10 (103711, 36) | DOI
[14] Two dimensional water waves in holomorphic coordinates (2014) (http://arxiv.org/abs/1401.1252)
[15] Global solutions of quasilinear systems of Klein-Gordon equations in 3D, J. Eur. Math. Soc. (JEMS), Volume 16 (2014) no. 11, pp. 2355-2431 | DOI
[16] Global solutions for the gravity water waves system in 2d, Invent. Math., Volume 199 (2015) no. 3, pp. 653-804 | DOI
[17] Small data blow-up for semilinear Klein-Gordon equations, Amer. J. Math., Volume 121 (1999) no. 3, pp. 629-669 http://muse.jhu.edu/journals/american_journal_of_mathematics/v121/121.3keel.pdf
[18] Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions, Comm. Pure Appl. Math., Volume 38 (1985) no. 5, pp. 631-641 | DOI
[19] The water waves problem, Mathematical Surveys and Monographs, 188, American Mathematical Society, Providence, RI, 2013, xx+321 pages (Mathematical analysis and asymptotics)
[20] A remark on asymptotic completeness for the critical nonlinear Klein-Gordon equation, Lett. Math. Phys., Volume 73 (2005) no. 3, pp. 249-258 | DOI
[21] Scattering for the Klein-Gordon equation with quadratic and variable coefficient cubic nonlinearities, Trans. Amer. Math. Soc., Volume 367 (2015) no. 12, pp. 8861-8909 | DOI
[22] Normal forms and global existence of solutions to a class of cubic nonlinear Klein-Gordon equations in one space dimension, Differential Integral Equations, Volume 10 (1997) no. 3, pp. 499-520
[23] Almost global existence of solutions for the quadratic semilinear Klein-Gordon equation in one space dimension, Funkcial. Ekvac., Volume 40 (1997) no. 2, pp. 313-333 http://www.math.kobe-u.ac.jp/~fe/xml/mr1480281.xml
[24] Global existence and asymptotic behavior of solutions for the Klein-Gordon equations with quadratic nonlinearity in two space dimensions, Math. Z., Volume 222 (1996) no. 3, pp. 341-362 | DOI
[25] Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math., Volume 38 (1985) no. 5, pp. 685-696 | DOI
[26] The Cauchy problem for nonlinear Klein-Gordon equations, Comm. Math. Phys., Volume 152 (1993) no. 3, pp. 433-478 http://projecteuclid.org/getRecord?id=euclid.cmp/1104252514
[27] Dispersive decay for the D Klein-Gordon equation with variable coefficient nonlinearities (2013) (http://arxiv.org/abs/1307.4808)
[28] On global small amplitude solutions to systems of cubic nonlinear Klein-Gordon equations with different mass terms in one space dimension, J. Differential Equations, Volume 192 (2003) no. 2, pp. 308-325 | DOI
[29] Large time asymptotics of solutions to nonlinear Klein-Gordon systems, Osaka J. Math., Volume 42 (2005) no. 1, pp. 65-83 http://projecteuclid.org/getRecord?id=euclid.ojm/1153494315
[30] Remarks on the asymptotic behavior of the cubic nonlinear Klein-Gordon equations in one space dimension, Differential Integral Equations, Volume 18 (2005) no. 5, pp. 481-494
[31] Large time behavior of solutions to the Klein-Gordon equation with nonlinear dissipative terms, J. Math. Soc. Japan, Volume 58 (2006) no. 2, pp. 379-400 http://projecteuclid.org/getRecord?id=euclid.jmsj/1149166781
[32] Well-posedness in Sobolev spaces of the full water wave problem in -D, Invent. Math., Volume 130 (1997) no. 1, pp. 39-72 | DOI
[33] Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc., Volume 12 (1999) no. 2, pp. 445-495 | DOI
[34] Almost global wellposedness of the 2-D full water wave problem, Invent. Math., Volume 177 (2009) no. 1, pp. 45-135 | DOI
[35] Global wellposedness of the 3-D full water wave problem, Invent. Math., Volume 184 (2011) no. 1, pp. 125-220 | DOI
[36] Blow-up for the one dimensional Klein-Gordon equation with a cubic nonlinearity (1996) (Preprint)
[37] Semiclassical analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, Providence, RI, 2012, xii+431 pages
Cité par Sources :