Dans cet article, nous fournissons une condition nécéssaire et suffisante pour la lissité du schéma qui paramétrise les représentations -dimensionelles d’une algèbre associative, engendrée par un nombre fini d’éléments sur un corps algébriquement clos. En particulier, notre résultat implique que les points satisfaisant sont réguliers. Ceci généralise aux algèbres engendrées par un nombre fini d’éléments des résultats connus sur les algèbres de dimension finie.
We give a necessary and sufficient smoothness condition for the scheme parameterizing the -dimensional representations of a finitely generated associative algebra over an algebraically closed field. In particular, our result implies that the points satisfying are regular. This generalizes well-known results on finite-dimensional algebras to finitely generated algebras.
Révisé le :
Accepté le :
Publié le :
Keywords: Noncommutative Geometry, Hochschild Cohomology, Representation Theory
Mot clés : Géométrie non-commutative, cohomologie de Hochschild, théorie des Représentations
@article{AIF_2016__66_3_1261_0, author = {Ardizzoni, Alessandro and Galluzzi, Federica and Vaccarino, Francesco}, title = {A new family of algebras whose representation schemes are smooth}, journal = {Annales de l'Institut Fourier}, pages = {1261--1277}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {3}, year = {2016}, doi = {10.5802/aif.3037}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3037/} }
TY - JOUR AU - Ardizzoni, Alessandro AU - Galluzzi, Federica AU - Vaccarino, Francesco TI - A new family of algebras whose representation schemes are smooth JO - Annales de l'Institut Fourier PY - 2016 SP - 1261 EP - 1277 VL - 66 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3037/ DO - 10.5802/aif.3037 LA - en ID - AIF_2016__66_3_1261_0 ER -
%0 Journal Article %A Ardizzoni, Alessandro %A Galluzzi, Federica %A Vaccarino, Francesco %T A new family of algebras whose representation schemes are smooth %J Annales de l'Institut Fourier %D 2016 %P 1261-1277 %V 66 %N 3 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.3037/ %R 10.5802/aif.3037 %G en %F AIF_2016__66_3_1261_0
Ardizzoni, Alessandro; Galluzzi, Federica; Vaccarino, Francesco. A new family of algebras whose representation schemes are smooth. Annales de l'Institut Fourier, Tome 66 (2016) no. 3, pp. 1261-1277. doi : 10.5802/aif.3037. http://www.numdam.org/articles/10.5802/aif.3037/
[1] A relation between Hochschild homology and cohomology for Gorenstein rings, Proc. Amer. Math. Soc., Volume 126 (1998) no. 5, pp. 1345-1348 | DOI
[2] Noncommutative Tangent Cones and Calabi Yau Algebras (http://arxiv.org/abs/0711.0179)
[3] A geometric version of the Morita equivalence, J. Algebra, Volume 139 (1991) no. 1, pp. 159-171 | DOI
[4] Homological algebra, Princeton University Press, Princeton, N. J., 1956, xv+390 pages
[5] Preprojective algebras, differential operators and a Conze embedding for deformations of Kleinian singularities, Comment. Math. Helv., Volume 74 (1999) no. 4, pp. 548-574 | DOI
[6] Irreducible components of varieties of modules, J. Reine Angew. Math., Volume 553 (2002), pp. 201-220 | DOI
[7] Algebra extensions and nonsingularity, J. Amer. Math. Soc., Volume 8 (1995) no. 2, pp. 251-289 | DOI
[8] Finite representation type is open, Proceedings of the International Conference on Representations of Algebras (Carleton Univ., Ottawa, Ont., 1974), Paper No. 10, Carleton Univ., Ottawa, Ont. (1974), 23 pp. Carleton Math. Lecture Notes, No. 9 pages
[9] Deformation Theory of finite-dimensional Modules and Algebras (2006) (Lectures given at ICTP)
[10] On the deformation theory of finite-dimensional algebras, Manuscripta Math., Volume 88 (1995) no. 2, pp. 191-208 | DOI
[11] On the deformation of rings and algebras, Ann. of Math. (2), Volume 79 (1964), pp. 59-103
[12] Calabi-Yau algebras (http://arxiv.org/abs/math/0612139)
[13] Lectures on Noncommutative Geometry (http://arxiv.org/abs/math/0506603)
[14] Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I, Inst. Hautes Études Sci. Publ. Math. (1964) no. 20, 259 pages
[15] Commutative algebras and cohomology, Trans. Amer. Math. Soc., Volume 104 (1962), pp. 191-204
[16] Introduction to Lie algebras and representation theory, Springer-Verlag, New York-Berlin, 1972, xii+169 pages (Graduate Texts in Mathematics, Vol. 9)
[17] Non-smooth algebra with smooth representation variety (asked in MathOverflow) (http://mathoverflow.net/questions/9738)
[18] Noncommutative geometry and Cayley-smooth orders, Pure and Applied Mathematics (Boca Raton), 290, Chapman & Hall/CRC, Boca Raton, FL, 2008, lxiv+524 pages
[19] Lectures on curves on an algebraic surface, With a section by G. M. Bergman. Annals of Mathematics Studies, No. 59, Princeton University Press, Princeton, N.J., 1966, xi+200 pages
[20] Rings with polynomial identities, Marcel Dekker, Inc., New York, 1973, viii+190 pages (Pure and Applied Mathematics, 17)
[21] Deformations of algebraic schemes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 334, Springer-Verlag, Berlin, 2006, xii+339 pages
[22] Linear representations, symmetric products and the commuting scheme, J. Algebra, Volume 317 (2007) no. 2, pp. 634-641 | DOI
[23] An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, 38, Cambridge University Press, Cambridge, 1994, xiv+450 pages | DOI
[24] A converse to the second Whitehead lemma, J. Lie Theory, Volume 18 (2008) no. 2, pp. 295-299
Cité par Sources :