Dans cet article, nous prouvons que chaque multiplicateur de Fourier sur l’espace homogène de Sobolev est une fonction continue. Notre théorème est une généralisation du résultat de A. Bonami et S. Poornima sur les multiplicateurs de Fourier, qui sont des fonctions homogènes de degré zéro.
In this paper we prove that every Fourier multiplier on the homogeneous Sobolev space is a continuous function. This theorem is a generalization of the result of A. Bonami and S. Poornima for Fourier multipliers, which are homogeneous functions of degree zero.
Révisé le :
Accepté le :
Publié le :
Keywords: Fourier multipliers, Sobolev spaces, Riesz product
Mot clés : multiplicateurs de Fourier, espaces de Sobolev, Produits de Riesz
@article{AIF_2016__66_3_1247_0, author = {Kazaniecki, Krystian and Wojciechowski, Micha{\l}}, title = {On the continuity of {Fourier} multipliers on the homogeneous {Sobolev} spaces ${\dot{W}^1_1(R^d)}$}, journal = {Annales de l'Institut Fourier}, pages = {1247--1260}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {3}, year = {2016}, doi = {10.5802/aif.3036}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3036/} }
TY - JOUR AU - Kazaniecki, Krystian AU - Wojciechowski, Michał TI - On the continuity of Fourier multipliers on the homogeneous Sobolev spaces ${\dot{W}^1_1(R^d)}$ JO - Annales de l'Institut Fourier PY - 2016 SP - 1247 EP - 1260 VL - 66 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3036/ DO - 10.5802/aif.3036 LA - en ID - AIF_2016__66_3_1247_0 ER -
%0 Journal Article %A Kazaniecki, Krystian %A Wojciechowski, Michał %T On the continuity of Fourier multipliers on the homogeneous Sobolev spaces ${\dot{W}^1_1(R^d)}$ %J Annales de l'Institut Fourier %D 2016 %P 1247-1260 %V 66 %N 3 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.3036/ %R 10.5802/aif.3036 %G en %F AIF_2016__66_3_1247_0
Kazaniecki, Krystian; Wojciechowski, Michał. On the continuity of Fourier multipliers on the homogeneous Sobolev spaces ${\dot{W}^1_1(R^d)}$. Annales de l'Institut Fourier, Tome 66 (2016) no. 3, pp. 1247-1260. doi : 10.5802/aif.3036. http://www.numdam.org/articles/10.5802/aif.3036/
[1] Nonmultipliers of the Sobolev spaces , J. Funct. Anal., Volume 71 (1987) no. 1, pp. 175-181 | DOI
[2] Sous-espaces invariants de , groupe abélien compact, Harmonic analysis (Publ. Math. Orsay 81), Volume 8, Univ. Paris XI, Orsay, 1981, Exp. No. 3, 15 pages
[3] Les espaces du type de Beppo Levi, Ann. Inst. Fourier, Grenoble, Volume 5 (1953–54), p. 305-370 (1955)
[4] On the equivalence between the sets of the trigonometric polynomials (http://arxiv.org/abs/1502.05994)
[5] Ornstein’s non-inequality Riesz product aproach. (http://arxiv.org/abs/1406.7319)
[6] -norm of combinations of products of independent random variables, Israel J. Math., Volume 203 (2014) no. 1, pp. 295-308 | DOI
[7] On multipliers, Ann. of Math. (2), Volume 81 (1965), pp. 364-379
[8] Endomorphismes des idéaux fermés de , classes de Hardy et séries de Fourier lacunaires, Ann. Sci. École Norm. Sup. (4), Volume 1 (1968), pp. 499-580
[9] A non-equality for differential operators in the norm., Arch. Rational Mech. Anal., Volume 11 (1962), pp. 40-49
[10] On the Sobolev spaces , Harmonic analysis (Cortona, 1982) (Lecture Notes in Math.), Volume 992, Springer, Berlin, 1983, pp. 161-173 | DOI
[11] Functional analysis, International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991, xviii+424 pages
[12] Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, N.J., 1971, x+297 pages (Princeton Mathematical Series, No. 32)
[13] On the strong type multiplier norms of rational functions in several variables, Illinois J. Math., Volume 42 (1998) no. 4, pp. 582-600 http://projecteuclid.org/euclid.ijm/1255985462
Cité par Sources :