Nous relions les hauteurs -adiques des cycles de Heegner généralisés à la dérivée d’une fonction -adique attachée à une paire , où est une forme modulaire ordinaire de poids et est un caractère de Hecke non-ramifé de type , pour . Ceci généralise la formule de Perrin-Riou (en poids deux) and Nekovář (poids plus élevé).
We relate the -adic heights of generalized Heegner cycles to the derivative of a -adic -function attached to a pair , where is an ordinary weight newform and is an unramified imaginary quadratic Hecke character of infinity type , with . This generalizes the -adic Gross-Zagier formula in the case due to Perrin-Riou (in weight two) and Nekovář (in higher weight).
Révisé le :
Accepté le :
Publié le :
Keywords: algebraic cycles, modular forms, $p$-adic $L$-functions
Mot clés : cycles algébriques, formes modulaires, fonctions $L$ $p$-adiques
@article{AIF_2016__66_3_1117_0, author = {Shnidman, Ariel}, title = {$p$-adic heights of generalized {Heegner} cycles}, journal = {Annales de l'Institut Fourier}, pages = {1117--1174}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {3}, year = {2016}, doi = {10.5802/aif.3033}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3033/} }
TY - JOUR AU - Shnidman, Ariel TI - $p$-adic heights of generalized Heegner cycles JO - Annales de l'Institut Fourier PY - 2016 SP - 1117 EP - 1174 VL - 66 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3033/ DO - 10.5802/aif.3033 LA - en ID - AIF_2016__66_3_1117_0 ER -
%0 Journal Article %A Shnidman, Ariel %T $p$-adic heights of generalized Heegner cycles %J Annales de l'Institut Fourier %D 2016 %P 1117-1174 %V 66 %N 3 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.3033/ %R 10.5802/aif.3033 %G en %F AIF_2016__66_3_1117_0
Shnidman, Ariel. $p$-adic heights of generalized Heegner cycles. Annales de l'Institut Fourier, Tome 66 (2016) no. 3, pp. 1117-1174. doi : 10.5802/aif.3033. http://www.numdam.org/articles/10.5802/aif.3033/
[1] Generalized Heegner cycles and -adic Rankin -series, Duke Math. J., Volume 162 (2013) no. 6, pp. 1033-1148 (With an appendix by Brian Conrad) | DOI
[2] Chow-Heegner points on CM elliptic curves and values of -adic -functions, Int. Math. Res. Not. IMRN (2014) no. 3, pp. 745-793
[3] -functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I (Progr. Math.), Volume 86, Birkhäuser Boston, Boston, MA, 1990, pp. 333-400
[4] Heegner cycles and -adic -functions (preprint)
[5] Heegner cycles and higher weight specializations of big Heegner points, Math. Ann., Volume 356 (2013) no. 4, pp. 1247-1282 | DOI
[6] Fonctions -adiques, Astérisque (2000) no. 266, pp. Exp. No. 851, 3, 21-58 (Séminaire Bourbaki, Vol. 1998/99)
[7] Lifting global representations with local properties (preprint)
[8] Gross-Zagier revisited, Heegner points and Rankin -series (Math. Sci. Res. Inst. Publ.), Volume 49, Cambridge Univ. Press, Cambridge, 2004, pp. 67-163 (With an appendix by W. R. Mann) | DOI
[9] On -adic absolute hodge cohomology and syntomic coefficients, I (preprint)
[10] -adic heights of Heegner points on Shimura curves (preprint)
[11] On the Selmer group attached to a modular form and an algebraic Hecke character (preprint)
[12] Crystalline cohomology and -adic Galois-representations, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988), Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 25-80
[13] Arithmetic on elliptic curves with complex multiplication, Lecture Notes in Mathematics, 776, Springer, Berlin, 1980, iii+95 pages (With an appendix by B. Mazur)
[14] Heegner points and derivatives of -series, Invent. Math., Volume 84 (1986) no. 2, pp. 225-320 | DOI
[15] A -adic measure attached to the zeta functions associated with two elliptic modular forms. I, Invent. Math., Volume 79 (1985) no. 1, pp. 159-195 | DOI
[16] The Iwasawa theoretic Gross-Zagier theorem, Compos. Math., Volume 141 (2005) no. 4, pp. 811-846 | DOI
[17] Shimura curves and special values of -adic -functions, Int. Math. Res. Not. IMRN (2015) no. 12, pp. 4177-4241 | DOI
[18] Arithmetic moduli of elliptic curves, Annals of Mathematics Studies, 108, Princeton University Press, Princeton, NJ, 1985, xiv+514 pages
[19] The -adic Gross-Zagier formula for elliptic curves at supersingular primes, Invent. Math., Volume 191 (2013) no. 3, pp. 527-629 | DOI
[20] On -adic Waldspurger formula (preprint)
[21] Modular forms, Springer-Verlag, Berlin, 1989, x+335 pages (Translated from the Japanese by Yoshitaka Maeda) | DOI
[22] Kolyvagin’s method for Chow groups of Kuga-Sato varieties, Invent. Math., Volume 107 (1992) no. 1, pp. 99-125 | DOI
[23] On -adic height pairings, Séminaire de Théorie des Nombres, Paris, 1990–91 (Progr. Math.), Volume 108, Birkhäuser Boston, Boston, MA, 1993, pp. 127-202 | DOI
[24] On the -adic height of Heegner cycles, Math. Ann., Volume 302 (1995) no. 4, pp. 609-686 | DOI
[25] -adic Abel-Jacobi maps and -adic heights, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998) (CRM Proc. Lecture Notes), Volume 24, Amer. Math. Soc., Providence, RI, 2000, pp. 367-379
[26] Modular forms and Dirichlet series, W. A. Benjamin, Inc., New York-Amsterdam, 1969, xvi+173 pp. (not consecutively paged) paperbound pages
[27] On Faltings’ method of almost étale extensions, Algebraic geometry—Seattle 2005. Part 2 (Proc. Sympos. Pure Math.), Volume 80, Amer. Math. Soc., Providence, RI, 2009, pp. 811-936 | DOI
[28] Points de Heegner et dérivées de fonctions -adiques, Invent. Math., Volume 89 (1987) no. 3, pp. 455-510 | DOI
[29] Fonctions -adiques associées à une forme modulaire et à un corps quadratique imaginaire, J. London Math. Soc. (2), Volume 38 (1988) no. 1, pp. 1-32 | DOI
[30] -adic -functions and -adic representations, SMF/AMS Texts and Monographs, 3, American Mathematical Society, Providence, RI; Société Mathématique de France, Paris, 2000, xx+150 pages (Translated from the 1995 French original by Leila Schneps and revised by the author)
[31] Classes de Chern et classes de cycles en cohomologie rigide, Bull. Soc. Math. France, Volume 131 (2003) no. 1, pp. 59-121
[32] Root numbers of Hecke -functions of CM fields, Amer. J. Math., Volume 104 (1982) no. 3, pp. 517-543 | DOI
[33] Motives for modular forms, Invent. Math., Volume 100 (1990) no. 2, pp. 419-430 | DOI
[34] Good reduction of abelian varieties, Ann. of Math. (2), Volume 88 (1968), pp. 492-517
[35] Iwasawa theory of elliptic curves with complex multiplication, Perspectives in Mathematics, 3, Academic Press, Inc., Boston, MA, 1987, x+154 pages (-adic functions)
[36] Crystalline fundamental groups. II. Log convergent cohomology and rigid cohomology, J. Math. Sci. Univ. Tokyo, Volume 9 (2002) no. 1, pp. 1-163
[37] The Eichler commutation relation for theta series with spherical harmonics, Acta Arith., Volume 63 (1993) no. 3, pp. 233-254
[38] On ordinary -adic representations associated to modular forms, Invent. Math., Volume 94 (1988) no. 3, pp. 529-573 | DOI
[39] Heights of Heegner cycles and derivatives of -series, Invent. Math., Volume 130 (1997) no. 1, pp. 99-152 | DOI
Cité par Sources :