On généralise la construction de la symétrie miroir des surfaces K3 aux variétés irréductibles holomorphes symplectiques polarisées par un réseau. Dans le cas des variétés de type on étudie la famille miroir des variétés polarisées et on généralise la notion de couple d’involutions non-symplectiques miroirs.
We generalize lattice-theoretical mirror symmetry for K3 surfaces to lattice polarized higher dimensional irreducible holomorphic symplectic manifolds. In the case of fourfolds of -type we then describe mirror families of polarized fourfolds and we give an example with mirror non-symplectic involutions.
Révisé le :
Accepté le :
Publié le :
Keywords: lattice polarized irreducible holomorphic symplectic manifold, mirror symmetry, lattice polarized hyperkähler manifold, mirror involution
Mot clés : variété irréductible holomorphe symplectique polarisée par un réseau, symétrie miroir, variété hyperkählerienne polarisée par un réseau, involution miroir
@article{AIF_2016__66_2_687_0, author = {Camere, Chiara}, title = {Lattice polarized irreducible holomorphic symplectic manifolds}, journal = {Annales de l'Institut Fourier}, pages = {687--709}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {2}, year = {2016}, doi = {10.5802/aif.3022}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3022/} }
TY - JOUR AU - Camere, Chiara TI - Lattice polarized irreducible holomorphic symplectic manifolds JO - Annales de l'Institut Fourier PY - 2016 SP - 687 EP - 709 VL - 66 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3022/ DO - 10.5802/aif.3022 LA - en ID - AIF_2016__66_2_687_0 ER -
%0 Journal Article %A Camere, Chiara %T Lattice polarized irreducible holomorphic symplectic manifolds %J Annales de l'Institut Fourier %D 2016 %P 687-709 %V 66 %N 2 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.3022/ %R 10.5802/aif.3022 %G en %F AIF_2016__66_2_687_0
Camere, Chiara. Lattice polarized irreducible holomorphic symplectic manifolds. Annales de l'Institut Fourier, Tome 66 (2016) no. 2, pp. 687-709. doi : 10.5802/aif.3022. http://www.numdam.org/articles/10.5802/aif.3022/
[1] Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. (2), Volume 84 (1966), pp. 442-528 | DOI
[2] Mori cones of holomorphic symplectic varieties of K3 type, Ann. Sci. Éc. Norm. Supér. (4), Volume 48 (2015) no. 4, pp. 941-950
[3] Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom., Volume 18 (1983) no. 4, pp. 755-782
[4] Classification of automorphisms on a deformation family of hyperkähler fourfolds by p-elementary lattices (2014) (To appear in Kyoto Journal of Mathematics, http://arxiv.org/abs/1402.5154)
[5] Calabi-Yau threefolds and complex multiplication, Essays on mirror manifolds, Int. Press, Hong Kong, 1992, pp. 489-502
[6] Sphere packings, lattices and groups, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 290, Springer-Verlag, New York, 1999, lxxiv+703 pages (With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov)
[7] Mirror symmetry for lattice polarized surfaces, J. Math. Sci., Volume 81 (1996) no. 3, pp. 2599-2630 (Algebraic geometry, 4) | DOI
[8] Periods of integrals on algebraic manifolds. II. Local study of the period mapping, Amer. J. Math., Volume 90 (1968), pp. 805-865 | DOI
[9] Moduli spaces of irreducible symplectic manifolds, Compos. Math., Volume 146 (2010) no. 2, pp. 404-434 | DOI
[10] Moduli of surfaces and irreducible symplectic manifolds, Handbook of Moduli I (Advanced Lect. in Math.), Volume 24, International Press, Somerville, 2012, pp. 459-526
[11] Calabi-Yau manifolds and related geometries, Universitext, Springer-Verlag, Berlin, 2003 (Lectures from the Summer School held in Nordfjordeid, June 2001)
[12] Mirror symmetry via -tori for a class of Calabi-Yau threefolds, Math. Ann., Volume 309 (1997) no. 3, pp. 505-531 | DOI
[13] Moving and ample cones of holomorphic symplectic fourfolds, Geom. Funct. Anal., Volume 19 (2009) no. 4, pp. 1065-1080 | DOI
[14] Compact hyper-Kähler manifolds: basic results, Invent. Math., Volume 135 (1999) no. 1, pp. 63-113 | DOI
[15] A global Torelli theorem for hyperkähler manifolds [after M. Verbitsky], Astérisque (2012) no. 348, pp. Exp. No. 1040, x, 375-403 (Séminaire Bourbaki: Vol. 2010/2011. Exposés 1027–1042)
[16] Moduli spaces of -type manifolds with non-symplectic involutions (2014) (http://arxiv.org/abs/1403.0554v1)
[17] A survey of Torelli and monodromy results for holomorphic-symplectic varieties, Complex and differential geometry (Springer Proc. Math.), Volume 8, Springer, Heidelberg, 2011, pp. 257-322
[18] A note on the Kähler and Mori cones of manifolds of type (2013) (http://arxiv.org/abs/1307.0393v1)
[19] Finite groups of automorphisms of Kählerian surfaces, Trudy Moskov. Mat. Obshch., Volume 38 (1979), pp. 75-137
[20] Integral symmetric bilinear forms and some of their applications, Math. USSR Izv., Volume 14 (1980), pp. 103-167 | DOI
[21] Factor groups of groups of the automorphisms of hyperbolic forms with respect to subgroups generated by 2-reflections., J. Soviet Math., Volume 22 (1983), pp. 1401-1475 | DOI
[22] Singularités exceptionnelles, la dualité étrange d’Arnold et les surfaces , C. R. Acad. Sci. Paris Sér. A-B, Volume 284 (1977) no. 11, p. A615-A618
[23] On the compactification of moduli spaces for algebraic surfaces, Mem. Amer. Math. Soc., Volume 70 (1987) no. 374, x+86 pages
[24] Mirror symmetry for hyper-Kähler manifolds, Mirror symmetry, III (Montreal, PQ, 1995) (AMS/IP Stud. Adv. Math.), Volume 10, Amer. Math. Soc., Providence, RI, 1999, pp. 115-156
[25] Mapping class group and a global Torelli theorem for hyperkähler manifolds, Duke Math. J., Volume 162 (2013) no. 15, pp. 2929-2986 (Appendix A by Eyal Markman) | DOI
[26] Miroirs et involutions sur les surfaces , Astérisque (1993) no. 218, pp. 273-323 Journées de Géométrie Algébrique d’Orsay (Orsay, 1992)
[27] Hodge theory and complex algebraic geometry. I, Cambridge Studies in Advanced Mathematics, 76, Cambridge University Press, Cambridge, 2002, x+322 pages (Translated from the French original by Leila Schneps) | DOI
Cité par Sources :