Lattice polarized irreducible holomorphic symplectic manifolds
[Variétés irréductibles holomorphes symplectiques polarisées par un réseau]
Annales de l'Institut Fourier, Tome 66 (2016) no. 2, pp. 687-709.

On généralise la construction de la symétrie miroir des surfaces K3 aux variétés irréductibles holomorphes symplectiques X polarisées par un réseau. Dans le cas des variétés de type K3 2 on étudie la famille miroir des variétés polarisées et on généralise la notion de couple d’involutions non-symplectiques miroirs.

We generalize lattice-theoretical mirror symmetry for K3 surfaces to lattice polarized higher dimensional irreducible holomorphic symplectic manifolds. In the case of fourfolds of K3 2 -type we then describe mirror families of polarized fourfolds and we give an example with mirror non-symplectic involutions.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3022
Classification : 14J15, 32G13, 14J33, 14J35
Keywords: lattice polarized irreducible holomorphic symplectic manifold, mirror symmetry, lattice polarized hyperkähler manifold, mirror involution
Mot clés : variété irréductible holomorphe symplectique polarisée par un réseau, symétrie miroir, variété hyperkählerienne polarisée par un réseau, involution miroir
Camere, Chiara 1

1 Dipartimento di Matematica “Federigo Enriques” Università degli Studi di Milano Via Cesare Saldini 50 20133 Milano (Italy)
@article{AIF_2016__66_2_687_0,
     author = {Camere, Chiara},
     title = {Lattice polarized irreducible holomorphic symplectic manifolds},
     journal = {Annales de l'Institut Fourier},
     pages = {687--709},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {66},
     number = {2},
     year = {2016},
     doi = {10.5802/aif.3022},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.3022/}
}
TY  - JOUR
AU  - Camere, Chiara
TI  - Lattice polarized irreducible holomorphic symplectic manifolds
JO  - Annales de l'Institut Fourier
PY  - 2016
SP  - 687
EP  - 709
VL  - 66
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.3022/
DO  - 10.5802/aif.3022
LA  - en
ID  - AIF_2016__66_2_687_0
ER  - 
%0 Journal Article
%A Camere, Chiara
%T Lattice polarized irreducible holomorphic symplectic manifolds
%J Annales de l'Institut Fourier
%D 2016
%P 687-709
%V 66
%N 2
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.3022/
%R 10.5802/aif.3022
%G en
%F AIF_2016__66_2_687_0
Camere, Chiara. Lattice polarized irreducible holomorphic symplectic manifolds. Annales de l'Institut Fourier, Tome 66 (2016) no. 2, pp. 687-709. doi : 10.5802/aif.3022. http://www.numdam.org/articles/10.5802/aif.3022/

[1] Baily, W. L. Jr.; Borel, A. Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. (2), Volume 84 (1966), pp. 442-528 | DOI

[2] Bayer, A.; Hassett, B.; Tschinkel, Y. Mori cones of holomorphic symplectic varieties of K3 type, Ann. Sci. Éc. Norm. Supér. (4), Volume 48 (2015) no. 4, pp. 941-950

[3] Beauville, A. Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom., Volume 18 (1983) no. 4, pp. 755-782

[4] Boissière, S.; Camere, C.; Sarti, A. Classification of automorphisms on a deformation family of hyperkähler fourfolds by p-elementary lattices (2014) (To appear in Kyoto Journal of Mathematics, http://arxiv.org/abs/1402.5154)

[5] Borcea, C. Calabi-Yau threefolds and complex multiplication, Essays on mirror manifolds, Int. Press, Hong Kong, 1992, pp. 489-502

[6] Conway, J. H.; Sloane, N. J. A. Sphere packings, lattices and groups, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 290, Springer-Verlag, New York, 1999, lxxiv+703 pages (With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov)

[7] Dolgachev, I. V. Mirror symmetry for lattice polarized K3 surfaces, J. Math. Sci., Volume 81 (1996) no. 3, pp. 2599-2630 (Algebraic geometry, 4) | DOI

[8] Griffiths, P. A. Periods of integrals on algebraic manifolds. II. Local study of the period mapping, Amer. J. Math., Volume 90 (1968), pp. 805-865 | DOI

[9] Gritsenko, V.; Hulek, K.; Sankaran, G. K. Moduli spaces of irreducible symplectic manifolds, Compos. Math., Volume 146 (2010) no. 2, pp. 404-434 | DOI

[10] Gritsenko, V.; Hulek, K.; Sankaran, G. K. Moduli of K3 surfaces and irreducible symplectic manifolds, Handbook of Moduli I (Advanced Lect. in Math.), Volume 24, International Press, Somerville, 2012, pp. 459-526

[11] Gross, M.; Huybrechts, D.; Joyce, D. Calabi-Yau manifolds and related geometries, Universitext, Springer-Verlag, Berlin, 2003 (Lectures from the Summer School held in Nordfjordeid, June 2001)

[12] Gross, Mark; Wilson, P. M. H. Mirror symmetry via 3-tori for a class of Calabi-Yau threefolds, Math. Ann., Volume 309 (1997) no. 3, pp. 505-531 | DOI

[13] Hassett, B.; Tschinkel, Y. Moving and ample cones of holomorphic symplectic fourfolds, Geom. Funct. Anal., Volume 19 (2009) no. 4, pp. 1065-1080 | DOI

[14] Huybrechts, D. Compact hyper-Kähler manifolds: basic results, Invent. Math., Volume 135 (1999) no. 1, pp. 63-113 | DOI

[15] Huybrechts, D. A global Torelli theorem for hyperkähler manifolds [after M. Verbitsky], Astérisque (2012) no. 348, pp. Exp. No. 1040, x, 375-403 (Séminaire Bourbaki: Vol. 2010/2011. Exposés 1027–1042)

[16] Joumaah, M. Moduli spaces of K3 [2] -type manifolds with non-symplectic involutions (2014) (http://arxiv.org/abs/1403.0554v1)

[17] Markman, E. A survey of Torelli and monodromy results for holomorphic-symplectic varieties, Complex and differential geometry (Springer Proc. Math.), Volume 8, Springer, Heidelberg, 2011, pp. 257-322

[18] Mongardi, G. A note on the Kähler and Mori cones of manifolds of K3 n type (2013) (http://arxiv.org/abs/1307.0393v1)

[19] Nikulin, V. V. Finite groups of automorphisms of Kählerian K3 surfaces, Trudy Moskov. Mat. Obshch., Volume 38 (1979), pp. 75-137

[20] Nikulin, V. V. Integral symmetric bilinear forms and some of their applications, Math. USSR Izv., Volume 14 (1980), pp. 103-167 | DOI

[21] Nikulin, V. V. Factor groups of groups of the automorphisms of hyperbolic forms with respect to subgroups generated by 2-reflections., J. Soviet Math., Volume 22 (1983), pp. 1401-1475 | DOI

[22] Pinkham, Henry Singularités exceptionnelles, la dualité étrange d’Arnold et les surfaces K-3, C. R. Acad. Sci. Paris Sér. A-B, Volume 284 (1977) no. 11, p. A615-A618

[23] Scattone, F. On the compactification of moduli spaces for algebraic K3 surfaces, Mem. Amer. Math. Soc., Volume 70 (1987) no. 374, x+86 pages

[24] Verbitsky, Misha Mirror symmetry for hyper-Kähler manifolds, Mirror symmetry, III (Montreal, PQ, 1995) (AMS/IP Stud. Adv. Math.), Volume 10, Amer. Math. Soc., Providence, RI, 1999, pp. 115-156

[25] Verbitsky, Misha Mapping class group and a global Torelli theorem for hyperkähler manifolds, Duke Math. J., Volume 162 (2013) no. 15, pp. 2929-2986 (Appendix A by Eyal Markman) | DOI

[26] Voisin, Claire Miroirs et involutions sur les surfaces K3, Astérisque (1993) no. 218, pp. 273-323 Journées de Géométrie Algébrique d’Orsay (Orsay, 1992)

[27] Voisin, Claire Hodge theory and complex algebraic geometry. I, Cambridge Studies in Advanced Mathematics, 76, Cambridge University Press, Cambridge, 2002, x+322 pages (Translated from the French original by Leila Schneps) | DOI

Cité par Sources :