Soit une extension finie de et un entier . À toute filtration de Hodge de poids de Hodge-Tate distincts sur une représentation de rang suffisamment générique du groupe de Weil-Deligne de , on associe une représentation localement -analytique semi-simple de longueur finie de . On montre plusieurs propriétés de cette représentation. Par exemple, lorsqu’elle possède un réseau stable par , alors la filtration de départ est faiblement admissible.
Let be a finite extension of and a positive integer. To each Hodge filtration with distinct Hodge-Tate weights on an -dimensional sufficiently generic representation of the Weil-Deligne group of , we associate a semi-simple finite length locally -analytic representation of . We show several properties of this representation of . For instance, if it has an invariant lattice, then the starting Hodge filtration is weakly admissible.
Révisé le :
Accepté le :
Publié le :
Mot clés : Représentation localement analytique, filtration de Hodge, socle
Keywords: Locally analytic representation, Hodge filtration, socle
@article{AIF_2016__66_2_633_0, author = {Breuil, Christophe}, title = {Socle localement analytique {I}}, journal = {Annales de l'Institut Fourier}, pages = {633--685}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {2}, year = {2016}, doi = {10.5802/aif.3021}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/aif.3021/} }
TY - JOUR AU - Breuil, Christophe TI - Socle localement analytique I JO - Annales de l'Institut Fourier PY - 2016 SP - 633 EP - 685 VL - 66 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3021/ DO - 10.5802/aif.3021 LA - fr ID - AIF_2016__66_2_633_0 ER -
Breuil, Christophe. Socle localement analytique I. Annales de l'Institut Fourier, Tome 66 (2016) no. 2, pp. 633-685. doi : 10.5802/aif.3021. http://www.numdam.org/articles/10.5802/aif.3021/
[1] Remarks on some locally -analytic representations of in the crystalline case, Non-abelian fundamental groups and Iwasawa theory (London Math. Soc. Lecture Note Ser.), Volume 393, Cambridge Univ. Press, Cambridge, 2012, pp. 212-238
[2] Vers le socle localement analytique pour II, Math. Ann., Volume 361 (2015) no. 3-4, pp. 741-785 | DOI
[3] Ordinary representations of and fundamental algebraic representations, Duke Math. J., Volume 164 (2015) no. 7, pp. 1271-1352 | DOI
[4] Multiplicités modulaires et représentations de et de en , Duke Math. J., Volume 115 (2002) no. 2, pp. 205-310 (With an appendix by Guy Henniart) | DOI
[5] Towards a modulo Langlands correspondence for , Mem. Amer. Math. Soc., Volume 216 (2012) no. 1016, vi+114 pages | DOI
[6] First steps towards -adic Langlands functoriality, J. Reine Angew. Math., Volume 610 (2007), pp. 149-180 | DOI
[7] Representations of reductive -adic groups : localization of Hecke algebras and applications, J. London Math. Soc. (2), Volume 63 (2001) no. 2, pp. 364-386 | DOI
[8] On Serre’s conjecture for mod Galois representations over totally real fields, Duke Math. J., Volume 155 (2010) no. 1, pp. 105-161 | DOI
[9] La série principale unitaire de , Astérisque (2010) no. 330, pp. 213-262
[10] Représentations de et -modules, Astérisque (2010) no. 330, pp. 281-509
[11] Construction des représentations -adiques semi-stables, Invent. Math., Volume 140 (2000) no. 1, pp. 1-43 | DOI
[12] Representations of finite groups of Lie type, London Mathematical Society Student Texts, 21, Cambridge University Press, Cambridge, 1991, iv+159 pages | DOI
[13] Jacquet modules of locally analytic representations of -adic reductive groups II. The relation to parabolic induction (à paraître à J. Institut Math. Jussieu.)
[14] Jacquet modules of locally analytic representations of -adic reductive groups. I. Construction and first properties, Ann. Sci. École Norm. Sup. (4), Volume 39 (2006) no. 5, pp. 775-839 | DOI
[15] Ordinary parts of admissible representations of -adic reductive groups I. Definition and first properties, Astérisque (2010) no. 331, pp. 355-402
[16] Représentations -adiques potentiellement semi-stables, Astérisque (1994) no. 223, pp. 321-347 Périodes -adiques (Bures-sur-Yvette, 1988)
[17] Représentations -adiques semi-stables, Astérisque (1994) no. 223, pp. 113-184 With an appendix by Pierre Colmez, Périodes -adiques (Bures-sur-Yvette, 1988)
[18] Automorphic lifts of prescribed types, Math. Ann., Volume 350 (2011) no. 1, pp. 107-144 | DOI
[19] On the weights of mod Hilbert modular forms, Invent. Math., Volume 184 (2011) no. 1, pp. 1-46 | DOI
[20] The Breuil-Mézard conjecture for potentially Barsotti-Tate representations, Forum Math. Pi, Volume 2 (2014), e1, 56 pages | DOI
[21] The weight in a Serre-type conjecture for tame -dimensional Galois representations, Duke Math. J., Volume 149 (2009) no. 1, pp. 37-116 | DOI
[22] Normes invariantes et existence de filtrations admissibles, J. Reine Angew. Math., Volume 634 (2009), pp. 107-141 | DOI
[23] Representations of semisimple Lie algebras in the BGG category , Graduate Studies in Mathematics, 94, American Mathematical Society, Providence, RI, 2008, xvi+289 pages | DOI
[24] Invariant distributions on -adic analytic groups, Duke Math. J., Volume 137 (2007) no. 1, pp. 19-62 | DOI
[25] Locally analytic vectors of some crystabelian representations of , Compos. Math., Volume 148 (2012) no. 1, pp. 28-64 | DOI
[26] The Jordan-Hölder series of the locally analytic Steinberg representation, Doc. Math., Volume 19 (2014), pp. 647-671
[27] On the irreducibility of locally analytic principal series representations, Represent. Theory, Volume 14 (2010), pp. 713-746 | DOI
[28] On Jordan-Hölder series of some locally analytic representations, J. Amer. Math. Soc., Volume 28 (2015) no. 1, pp. 99-157 | DOI
[29] Locally algebraic representations of -adic groups, Represent. Theory, Volume 5 (2001), pp. 111-128 appendice à -finite locally analytic representations (Schneider P., Teitelbaum J.) | DOI
[30] Weights in Serre’s conjecture for Hilbert modular forms : the ramified case, Israel J. Math., Volume 166 (2008), pp. 369-391 | DOI
[31] Analytic vectors in continuous -adic representations, Compos. Math., Volume 145 (2009) no. 1, pp. 247-270 | DOI
[32] Banach-Hecke algebras and -adic Galois representations, Doc. Math. (2006) no. Extra Vol., pp. 631-684
[33] Nonarchimedean functional analysis, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002, vi+156 pages | DOI
[34] Locally analytic distributions and -adic representation theory, with applications to , J. Amer. Math. Soc., Volume 15 (2002) no. 2, p. 443-468 (electronic) | DOI
[35] Algebras of -adic distributions and admissible representations, Invent. Math., Volume 153 (2003) no. 1, pp. 145-196 | DOI
[36] Représentations -adiques de et catégories dérivées, Israel J. Math., Volume 176 (2010), pp. 307-361 | DOI
[37] Induced representations of reductive -adic groups. II. On irreducible representations of , Ann. Sci. École Norm. Sup. (4), Volume 13 (1980) no. 2, pp. 165-210
Cité par Sources :