Cet article est consacré à l’étude des domaines invariants dans , un domaine de Stein particulier dans la complexification d’un espace symétrique Hermitien irréductible . Le domaine , introduit récemment par Krötz et Opdam, contient la couronne et il est maximal en ce qui concerne la propreté de l’action de . Dans le cas tubulaire, contient aussi , un domaine de Stein invariant lié à la structure causale d’une orbite symétrique dans le bord de .
On demontre que l’enveloppe d’holomorphie d’un domaine invariant dans , non contenu ni dans ni dans , est univalent et coincide avec . Ce fait, en combination avec des résultats connus pour et , démontre l’univalence de l’enveloppe d’holomorphie d’un domaine arbitraire dans et complète la classification des domains de Stein invariants dans
In this paper we investigate invariant domains in , a distinguished -invariant, Stein domain in the complexification of an irreducible Hermitian symmetric space . The domain , recently introduced by Krötz and Opdam, contains the crown domain and it is maximal with respect to properness of the -action. In the tube case, it also contains , an invariant Stein domain arising from the compactly causal structure of a symmetric orbit in the boundary of . We prove that the envelope of holomorphy of an invariant domain in , which is contained neither in nor in , is univalent and coincides with . This fact, together with known results concerning and , proves the univalence of the envelope of holomorphy of an arbitrary invariant domain in and completes the classification of invariant Stein domains therein.
Révisé le :
Accepté le :
Publié le :
Keywords: Hermitian symmetric space, Lie group complexification, envelope of holomorphy, invariant Stein domain
Mot clés : Espace symétrique hermitien, complexification, enveloppe d’holomorphie, domaine de Stein invariant
@article{AIF_2016__66_1_143_0, author = {Geatti, Laura and Iannuzzi, Andrea}, title = {Invariant envelopes of holomorphy in the complexification of a {Hermitian} symmetric space}, journal = {Annales de l'Institut Fourier}, pages = {143--174}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {1}, year = {2016}, doi = {10.5802/aif.3008}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3008/} }
TY - JOUR AU - Geatti, Laura AU - Iannuzzi, Andrea TI - Invariant envelopes of holomorphy in the complexification of a Hermitian symmetric space JO - Annales de l'Institut Fourier PY - 2016 SP - 143 EP - 174 VL - 66 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3008/ DO - 10.5802/aif.3008 LA - en ID - AIF_2016__66_1_143_0 ER -
%0 Journal Article %A Geatti, Laura %A Iannuzzi, Andrea %T Invariant envelopes of holomorphy in the complexification of a Hermitian symmetric space %J Annales de l'Institut Fourier %D 2016 %P 143-174 %V 66 %N 1 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.3008/ %R 10.5802/aif.3008 %G en %F AIF_2016__66_1_143_0
Geatti, Laura; Iannuzzi, Andrea. Invariant envelopes of holomorphy in the complexification of a Hermitian symmetric space. Annales de l'Institut Fourier, Tome 66 (2016) no. 1, pp. 143-174. doi : 10.5802/aif.3008. http://www.numdam.org/articles/10.5802/aif.3008/
[1] On Stein extensions of real symmetric spaces, Math. Ann., Volume 286 (1990) no. 1-3, pp. 1-12 | DOI
[2] Representations of compact Lie groups, Graduate Texts in Mathematics, 98, Springer-Verlag, New York, 1985, x+313 pages | DOI
[3] Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann., Volume 140 (1960), pp. 94-123
[4] Orbit structure of a distinguished Stein invariant domain in the complexification of a Hermitian symmetric space., Math. Z., Volume 278 (2014) no. 3-4, pp. 769-793 | DOI
[5] Invariant domains in the complexification of a noncompact Riemannian symmetric space, J. Algebra, Volume 251 (2002) no. 2, pp. 619-685 | DOI
[6] Univalence of equivariant Riemann domains over the complexifications of rank-one Riemannian symmetric spaces, Pacific J. Math., Volume 238 (2008) no. 2, pp. 275-330 | DOI
[7] Invariant Stein domains in Stein symmetric spaces and a nonlinear complex convexity theorem, Int. Math. Res. Not. (2002) no. 18, pp. 959-971 | DOI
[8] Introduction to holomorphic functions of several variables. Vol. I, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1990, xx+203 pages (Function theory)
[9] An introduction to complex analysis in several variables, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973, x+213 pages (North-Holland Mathematical Library, Vol. 7)
[10] Lie groups beyond an introduction, Progress in Mathematics, 140, Birkhäuser Boston, Inc., Boston, MA, 2002, xviii+812 pages
[11] Domains of holomorphy for irreducible unitary representations of simple Lie groups, Invent. Math., Volume 172 (2008) no. 2, pp. 277-288 | DOI
[12] Analysis on the crown domain, Geom. Funct. Anal., Volume 18 (2008) no. 4, pp. 1326-1421 | DOI
[13] Holomorphic extensions of representations. I. Automorphic functions, Ann. of Math. (2), Volume 159 (2004) no. 2, pp. 641-724 | DOI
[14] Holomorphic extensions of representations. II. Geometry and harmonic analysis, Geom. Funct. Anal., Volume 15 (2005) no. 1, pp. 190-245 | DOI
[15] On the complex and convex geometry of Olshanskiĭ semigroups, Ann. Inst. Fourier (Grenoble), Volume 48 (1998) no. 1, pp. 149-203
[16] On the complex geometry of invariant domains in complexified symmetric spaces, Ann. Inst. Fourier (Grenoble), Volume 49 (1999) no. 1, pp. vi, x, 177-225
[17] On quotient varieties and the affine embedding of certain homogeneous spaces, Trans. Amer. Math. Soc., Volume 101 (1961), pp. 211-223
[18] On envelopes of holomorphy, Comm. Pure Appl. Math., Volume 16 (1963), pp. 9-17
Cité par Sources :