Nous utilisons la topologie des espaces de configuration pour caractériser les paires de Neuwirth–Stallings , où est de dimension . En conséquence, nous construisons des germes d’applications polynomiales ayant une singularité isolée à l’origine tels que leurs fibres de Milnor ne soient pas difféomorphes au disque, mettant ainsi un terme à la question de non-trivialité due à Milnor. En outre, pour un germe d’application polynomiale ou ayant une singularité isolée à l’origine, nous étudions les conditions dans lesquelles la fibre de Milnor associée ait le type d’homotopie d’un bouquet de sphères. De plus, nous construisons pour chaque paire , où , un nouveau exemple d’un germe d’application polynomiale ayant une singularité isolée à l’origine tel que la fibre de Milnor associée ait le type d’homotopie d’un bouquet de sphères non triviales.
We use the topology of configuration spaces to give a characterization of Neuwirth–Stallings pairs with . As a consequence, we construct polynomial map germs with an isolated singularity at the origin such that their Milnor fibers are not diffeomorphic to a disk, thus putting an end to Milnor’s non-triviality question. Furthermore, for a polynomial map germ or , , with an isolated singularity at the origin, we study the conditions under which the associated Milnor fiber has the homotopy type of a bouquet of spheres. We then construct, for every pair with , a new example of a polynomial map germ with an isolated singularity at the origin such that its Milnor fiber has the homotopy type of a bouquet of a positive number of spheres.
Révisé le :
Accepté le :
Publié le :
Keywords: Neuwirth–Stallings pair, higher open book structure, configuration space, real Milnor fiber, real polynomial map germ
Mot clés : paire de Neuwirth–Stallings, structure de livre ouvert supérieure, espaces de configurations, fibre de Milnor réelle, germe d’application polynomiale.
@article{AIF_2016__66_1_83_0, author = {Ara\'ujo dos Santos, Raimundo and Hohlenwerger, Maria A.B. and Saeki, Osamu and Souza, Taciana O.}, title = {New examples of {Neuwirth{\textendash}Stallings} pairs and non-trivial real {Milnor} fibrations}, journal = {Annales de l'Institut Fourier}, pages = {83--104}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {1}, year = {2016}, doi = {10.5802/aif.3006}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3006/} }
TY - JOUR AU - Araújo dos Santos, Raimundo AU - Hohlenwerger, Maria A.B. AU - Saeki, Osamu AU - Souza, Taciana O. TI - New examples of Neuwirth–Stallings pairs and non-trivial real Milnor fibrations JO - Annales de l'Institut Fourier PY - 2016 SP - 83 EP - 104 VL - 66 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3006/ DO - 10.5802/aif.3006 LA - en ID - AIF_2016__66_1_83_0 ER -
%0 Journal Article %A Araújo dos Santos, Raimundo %A Hohlenwerger, Maria A.B. %A Saeki, Osamu %A Souza, Taciana O. %T New examples of Neuwirth–Stallings pairs and non-trivial real Milnor fibrations %J Annales de l'Institut Fourier %D 2016 %P 83-104 %V 66 %N 1 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.3006/ %R 10.5802/aif.3006 %G en %F AIF_2016__66_1_83_0
Araújo dos Santos, Raimundo; Hohlenwerger, Maria A.B.; Saeki, Osamu; Souza, Taciana O. New examples of Neuwirth–Stallings pairs and non-trivial real Milnor fibrations. Annales de l'Institut Fourier, Tome 66 (2016) no. 1, pp. 83-104. doi : 10.5802/aif.3006. http://www.numdam.org/articles/10.5802/aif.3006/
[1] Zur Isotopie zweidimensionaler Flächen im , Abh. Math. Sem. Univ. Hamburg, Volume 4 (1925) no. 1, pp. 174-177 | DOI
[2] Sur les difféomorphismes de la sphère de dimension trois , Lecture Notes in Mathematics, No. 53, Springer-Verlag, Berlin-New York, 1968, xii+133 pages
[3] Non-trivial polynomial isolated singularities, Nederl. Akad. Wetensch. Proc. Ser. A 78=Indag. Math., Volume 37 (1975), pp. 149-154
[4] Topology of real Milnor fibration for non-isolated singularities (http://arxiv.org/abs/1211.6233, 2012)
[5] Geometry and topology of configuration spaces, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2001, xvi+313 pages | DOI
[6] Global classification of isolated singularities in dimensions and , Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), Volume 10 (2011) no. 4, pp. 819-861
[7] Differentiable links, Topology, Volume 1 (1962) no. 3, pp. 241-244
[8] A proof of the Smale conjecture, , Ann. of Math. (2), Volume 117 (1983) no. 3, pp. 553-607 | DOI
[9] Groups of homotopy spheres. I, Ann. of Math. (2), Volume 77 (1963) no. 3, pp. 504-537
[10] The local degree of a smooth mapping, Sakharth. SSR Mecn. Akad. Moambe, Volume 85 (1977) no. 2, pp. 309-312
[11] A note on polynomial isolated singularities, Nederl. Akad. Wetensch. Proc. Ser. A 74=Indag. Math., Volume 33 (1971), pp. 418-421
[12] Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J., 1968, iii+122 pages
[13] Differential topology forty-six years later, Notices Amer. Math. Soc., Volume 58 (2011), pp. 804-809
[14] Local triviality of the restriction map for embeddings, Comment. Math. Helv., Volume 34 (1960) no. 1, pp. 305-312
[15] Topology of the real Milnor fiber for isolated singularities, Real and complex singularities (Contemp. Math.), Volume 569, Amer. Math. Soc., Providence, RI, 2012, pp. 67-75 | DOI
[16] Real map germs and higher open book structures, Geom. Dedicata, Volume 147 (2010), pp. 177-185 | DOI
[17] Singular open book structures from real mappings, Cent. Eur. J. Math., Volume 11 (2013) no. 5, pp. 817-828 | DOI
[18] Real polynomial maps and singular open books at infinity (2014) (http://arxiv.org/abs/1401.8286)
[19] Generalized Poincaré’s conjecture in dimensions greater than four, Ann. of Math. (2), Volume 74 (1961) no. 2, pp. 391-406
[20] New characterization of trivial maps in 3-dimensional real Milnor fibers, JP J. Geom. Topol., Volume 12 (2012) no. 2, pp. 207-217
[21] Twisting spun knots, Trans. Amer. Math. Soc., Volume 115 (1965), pp. 471-495
Cité par Sources :