Soit une variété projective normale et un diviseur de Cartier ample sur . Supposons que n’est pas l’espace projectif. Nous montrons que le faisceau cotangent tordu est génériquement nef par rapport à la polarisation . Comme conséquence nous obtenons un théorème de Kobayashi-Ochiai pour les feuilletages : si est un feuilletage tel que , alors est au plus le rang de .
Let be a normal projective variety, and let be an ample Cartier divisor on . Suppose that is not the projective space. We prove that the twisted cotangent sheaf is generically nef with respect to the polarisation . As an application we prove a Kobayashi-Ochiai theorem for foliations: if is a foliation such that , then is at most the rank of .
Keywords: Cotangent sheaf, foliations, Kobayashi-Ochiai theorem
Mot clés : faisceau cotangent, feuilletages, théorème de Kobayashi-Ochiai
@article{AIF_2014__64_6_2465_0, author = {H\"oring, Andreas}, title = {Twisted cotangent sheaves and a {Kobayashi-Ochiai} theorem for foliations}, journal = {Annales de l'Institut Fourier}, pages = {2465--2480}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {64}, number = {6}, year = {2014}, doi = {10.5802/aif.2917}, zbl = {06387344}, mrnumber = {3331171}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2917/} }
TY - JOUR AU - Höring, Andreas TI - Twisted cotangent sheaves and a Kobayashi-Ochiai theorem for foliations JO - Annales de l'Institut Fourier PY - 2014 SP - 2465 EP - 2480 VL - 64 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2917/ DO - 10.5802/aif.2917 LA - en ID - AIF_2014__64_6_2465_0 ER -
%0 Journal Article %A Höring, Andreas %T Twisted cotangent sheaves and a Kobayashi-Ochiai theorem for foliations %J Annales de l'Institut Fourier %D 2014 %P 2465-2480 %V 64 %N 6 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2917/ %R 10.5802/aif.2917 %G en %F AIF_2014__64_6_2465_0
Höring, Andreas. Twisted cotangent sheaves and a Kobayashi-Ochiai theorem for foliations. Annales de l'Institut Fourier, Tome 64 (2014) no. 6, pp. 2465-2480. doi : 10.5802/aif.2917. http://www.numdam.org/articles/10.5802/aif.2917/
[1] Some remarks on the study of good contractions, Manuscripta Math., Volume 87 (1995) no. 3, pp. 359-367 | DOI | MR | Zbl
[2] Minimal model program with scaling and adjunction theory, Internat. J. Math., Volume 24 (2013) no. 2, pp. 1350007, 13 | DOI | MR | Zbl
[3] On codimension 1 del Pezzo foliations on varieties with mild singularities (2012) (arXiv 1210.4013, preprint, to appear in Mathematische Annalen)
[4] On Fano foliations, Adv. Math., Volume 238 (2013), pp. 70-118 | DOI | MR | Zbl
[5] Cohomological characterizations of projective spaces and hyperquadrics, Invent. Math., Volume 174 (2008) no. 2, pp. 233-253 | DOI | MR | Zbl
[6] Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 4, Springer-Verlag, Berlin, 2004, pp. xii+436 | MR | Zbl
[7] The adjunction theory of complex projective varieties, de Gruyter Expositions in Mathematics, 16, Walter de Gruyter & Co., Berlin, 1995, pp. xxii+398 | MR | Zbl
[8] Rational curves on foliated varieties (February 2001), pp. 1-29 (Prépublications de l’IHES)
[9] Higher-dimensional algebraic geometry, Universitext, Springer-Verlag, New York, 2001, pp. xiv+233 | MR | Zbl
[10] Compact complex manifolds with numerically effective tangent bundles, J. Algebraic Geom., Volume 3 (1994) no. 2, pp. 295-345 | MR | Zbl
[11] Caractérisation de l’espace projectif, Manuscripta Math., Volume 115 (2004) no. 1, pp. 19-30 | DOI | MR | Zbl
[12] Restrictions of semistable bundles on projective varieties, Comment. Math. Helv., Volume 59 (1984) no. 4, pp. 635-650 | DOI | EuDML | MR | Zbl
[13] Remarks on quasi-polarized varieties, Nagoya Math. J., Volume 115 (1989), pp. 105-123 | MR | Zbl
[14] Varieties of small Kodaira dimension whose cotangent bundles are semiample, Compositio Math., Volume 84 (1992) no. 1, pp. 43-52 | EuDML | Numdam | MR | Zbl
[15] Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 2, Springer-Verlag, Berlin, 1998, pp. xiv+470 | MR | Zbl
[16] Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977, pp. xvi+496 (Graduate Texts in Mathematics, No. 52) | MR | Zbl
[17] The sectional genus of quasi-polarised varieties, Arch. Math. (Basel), Volume 95 (2010) no. 2, pp. 125-133 | DOI | MR | Zbl
[18] On a conjecture of Beltrametti and Sommese, J. Algebraic Geom., Volume 21 (2012) no. 4, pp. 721-751 | DOI | MR | Zbl
[19] Mori contractions of maximal length, Publ. Res. Inst. Math. Sci., Volume 49 (2013) no. 1, pp. 215-228 | DOI | MR | Zbl
[20] Rationally connected foliations after Bogomolov and McQuillan, J. Algebraic Geom., Volume 16 (2007) no. 1, pp. 65-81 | DOI | MR | Zbl
[21] Characterizations of complex projective spaces and hyperquadrics, J. Math. Kyoto Univ., Volume 13 (1973), pp. 31-47 | MR | Zbl
[22] Singularities of the minimal model program, Cambridge Tracts in Mathematics, 200, Cambridge University Press, Cambridge, 2013, pp. x+370 (With a collaboration of Sándor Kovács) | MR | Zbl
[23] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, Cambridge, 1998, pp. viii+254 (With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original) | MR | Zbl
[24] Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete, 49, Springer-Verlag, Berlin, 2004, pp. xviii+385 (Positivity for vector bundles, and multiplier ideals) | MR | Zbl
[25] Semistable sheaves on projective varieties and their restriction to curves, Math. Ann., Volume 258 (1981/82) no. 3, pp. 213-224 | DOI | EuDML | MR | Zbl
[26] Geometry of higher-dimensional algebraic varieties, DMV Seminar, 26, Birkhäuser Verlag, Basel, 1997, pp. vi+217 | MR | Zbl
[27] Caractérisations des espaces projectifs et des quadriques (2010) (arXiv)
[28] A cohomological characterization of , Invent. Math., Volume 72 (1983) no. 2, pp. 315-322 | DOI | EuDML | MR | Zbl
Cité par Sources :