Une application monomiale d’une variété torique complexe dans elle-même est dite -stable si l’action induite sur le -ème groupe de cohomologie est compatible avec l’itération. Nous démontrons que sous des conditions appropriées sur les valeurs propres de la matrice des exposants associés de , il existe un modèle torique à singularités quotients pour laquelle est -stable. De plus, si l’on remplace par une de ses itérés, l’existence d’un modèle torique -stable pour est garantie dès lors que les degrés dynamiques de satisfont la condition . Par ailleurs, nous donnons des exemples d’applications monomiales pour lesquelles cette condition n’est pas satisfaite, et dont la suite de degrés ne satisfait aucune condition de récurrence linéaire. Il en résulte qu’une telle application ne peut être -stable pour aucune modèle torique à singularités quotients.
A monomial self-map on a complex toric variety is said to be -stable if the action induced on the -cohomology is compatible with iteration. We show that under suitable conditions on the eigenvalues of the matrix of exponents of , we can find a toric model with at worst quotient singularities where is -stable. If is replaced by an iterate one can find a -stable model as soon as the dynamical degrees of satisfy . On the other hand, we give examples of monomial maps , where this condition is not satisfied and where the degree sequences do not satisfy any linear recurrence. It follows that such an is not -stable on any toric model with at worst quotient singularities.
Keywords: Algebraic stability, monomial maps, degree growth
Mot clés : stabilité algébrique, applications monomiales, croissance des degrés
@article{AIF_2014__64_5_2127_0, author = {Lin, Jan-Li and Wulcan, Elizabeth}, title = {Stabilization of monomial maps in higher codimension}, journal = {Annales de l'Institut Fourier}, pages = {2127--2146}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {64}, number = {5}, year = {2014}, doi = {10.5802/aif.2906}, zbl = {06387333}, mrnumber = {3330933}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2906/} }
TY - JOUR AU - Lin, Jan-Li AU - Wulcan, Elizabeth TI - Stabilization of monomial maps in higher codimension JO - Annales de l'Institut Fourier PY - 2014 SP - 2127 EP - 2146 VL - 64 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2906/ DO - 10.5802/aif.2906 LA - en ID - AIF_2014__64_5_2127_0 ER -
%0 Journal Article %A Lin, Jan-Li %A Wulcan, Elizabeth %T Stabilization of monomial maps in higher codimension %J Annales de l'Institut Fourier %D 2014 %P 2127-2146 %V 64 %N 5 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2906/ %R 10.5802/aif.2906 %G en %F AIF_2014__64_5_2127_0
Lin, Jan-Li; Wulcan, Elizabeth. Stabilization of monomial maps in higher codimension. Annales de l'Institut Fourier, Tome 64 (2014) no. 5, pp. 2127-2146. doi : 10.5802/aif.2906. http://www.numdam.org/articles/10.5802/aif.2906/
[1] Possible spectra of totally positive matrices, Linear Algebra Appl., Volume 62 (1984), pp. 231-233 | DOI | MR | Zbl
[2] Linear recurrences in the degree sequences of monomial mappings, Ergodic Theory Dynam. Systems, Volume 28 (2008) no. 5, pp. 1369-1375 | DOI | MR | Zbl
[3] The geometry of toric varieties, Uspekhi Mat. Nauk, Volume 33 (1978) no. 2(200), p. 85-134, 247 | MR | Zbl
[4] Dynamics of bimeromorphic maps of surfaces, Amer. J. Math., Volume 123 (2001) no. 6, pp. 1135-1169 | DOI | MR | Zbl
[5] Dynamics of regular birational maps in , J. Funct. Anal., Volume 222 (2005) no. 1, pp. 202-216 | DOI | MR | Zbl
[6] Une borne supérieure pour l’entropie topologique d’une application rationnelle, Ann. of Math. (2), Volume 161 (2005) no. 3, pp. 1637-1644 | DOI | MR | Zbl
[7] Super-potentials of positive closed currents, intersection theory and dynamics, Acta Math., Volume 203 (2009) no. 1, pp. 1-82 | DOI | MR | Zbl
[8] Les applications monomiales en deux dimensions, Michigan Math. J., Volume 51 (2003) no. 3, pp. 467-475 | DOI | MR | Zbl
[9] Dynamical compactifications of , Ann. of Math. (2), Volume 173 (2011) no. 1, pp. 211-248 | DOI | MR | Zbl
[10] Degree growth of monomial maps and McMullen’s polytope algebra, Indiana Univ. Math. J., Volume 61 (2012) no. 2, pp. 493-524 | DOI | MR | Zbl
[11] Complex dynamics in higher dimension. II, Modern methods in complex analysis (Princeton, NJ, 1992) (Ann. of Math. Stud.), Volume 137, Princeton Univ. Press, Princeton, NJ, 1995, pp. 135-182 | MR | Zbl
[12] Introduction to toric varieties, Annals of Mathematics Studies, 131, Princeton University Press, Princeton, NJ, 1993, pp. xii+157 (The William H. Roever Lectures in Geometry) | MR | Zbl
[13] Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 2, Springer-Verlag, Berlin, 1998, pp. xiv+470 | MR | Zbl
[14] Ergodic properties of rational mappings with large topological degree, Ann. of Math. (2), Volume 161 (2005) no. 3, pp. 1589-1607 | DOI | MR | Zbl
[15] Degree-growth of monomial maps, Ergodic Theory Dynam. Systems, Volume 27 (2007) no. 5, pp. 1375-1397 | DOI | MR | Zbl
[16] A polyhedral method for solving sparse polynomial systems, Math. Comp., Volume 64 (1995) no. 212, pp. 1541-1555 | DOI | MR | Zbl
[17] Stabilization of monomial maps, Michigan Math. J., Volume 60 (2011) no. 3, pp. 629-660 | DOI | MR | Zbl
[18] On Degree Growth and Stabilization of Three Dimensional Monomial Maps Jan-Li Lin (Michigan Math. J., to appear)
[19] Algebraic stability and degree growth of monomial maps, Math. Z., Volume 271 (2012) no. 1-2, pp. 293-311 | DOI | MR | Zbl
[20] Pulling back cohomology classes and dynamical degrees of monomial maps, Bull. Soc. Math. France, Volume 140 (2012) no. 4, p. 533-549 (2013) | Numdam | MR
[21] Lecture notes on toric varieties (Available on the author’s webpage: www.math.lsa.umich.edu/~mmustata)
[22] Convex bodies and algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 15, Springer-Verlag, Berlin, 1988, pp. viii+212 (An introduction to the theory of toric varieties, Translated from the Japanese) | MR | Zbl
[23] Mixed Hodge structures, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 52, Springer-Verlag, Berlin, 2008, pp. xiv+470 | MR | Zbl
[24] Value distribution for sequences of rational mappings and complex dynamics, Indiana Univ. Math. J., Volume 46 (1997) no. 3, pp. 897-932 | DOI | MR | Zbl
[25] Dynamique des applications rationnelles de , Dynamique et géométrie complexes (Lyon, 1997) (Panor. Synthèses), Volume 8, Soc. Math. France, Paris, 1999, p. ix-x, xi–xii, 97–185 | MR | Zbl
[26] Enumerative combinatorics. Vol. I, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, 1986, pp. xiv+306 (With a foreword by Gian-Carlo Rota) | MR | Zbl
Cité par Sources :