Lyapunov Exponents of Rank 2-Variations of Hodge Structures and Modular Embeddings
[Exposants de Lyapunov de variations de structures de Hodge de rang 2 et plongements modulaires]
Annales de l'Institut Fourier, Tome 64 (2014) no. 5, pp. 2037-2066.

Si la représentation de monodromie d’une variation de structures de Hodge sur une courbe hyperbolique stabilise un sous-espace de rang 2, elle possède un seul exposant de Lyapunov non-negative. Nous deduisons une formule explicite pour cet exposant dans le cas où la monodromie est discrète en employant seulement la représentation.

If the monodromy representation of a VHS over a hyperbolic curve stabilizes a rank two subspace, there is a single non-negative Lyapunov exponent associated with it. We derive an explicit formula using only the representation in the case when the monodromy is discrete.

DOI : 10.5802/aif.2903
Classification : 32G20, 37D25, 30F35
Keywords: Lyapunov exponent, Kontsevich-Zorich cocycle, variations of Hodge structures
Mot clés : Exposants de Lyapunov, cocycle de Kontsevich-Zorich, variations de structures de Hodge
Kappes, André 1

1 Goethe-Universität Frankfurt am Main Institut für Mathematik Robert-Mayer-Str. 6–8 Frankfurt am Main (Germany)
@article{AIF_2014__64_5_2037_0,
     author = {Kappes, Andr\'e},
     title = {Lyapunov {Exponents} of {Rank} $2${-Variations} of {Hodge} {Structures} and {Modular} {Embeddings}},
     journal = {Annales de l'Institut Fourier},
     pages = {2037--2066},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {64},
     number = {5},
     year = {2014},
     doi = {10.5802/aif.2903},
     mrnumber = {3330930},
     zbl = {1314.32020},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2903/}
}
TY  - JOUR
AU  - Kappes, André
TI  - Lyapunov Exponents of Rank $2$-Variations of Hodge Structures and Modular Embeddings
JO  - Annales de l'Institut Fourier
PY  - 2014
SP  - 2037
EP  - 2066
VL  - 64
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2903/
DO  - 10.5802/aif.2903
LA  - en
ID  - AIF_2014__64_5_2037_0
ER  - 
%0 Journal Article
%A Kappes, André
%T Lyapunov Exponents of Rank $2$-Variations of Hodge Structures and Modular Embeddings
%J Annales de l'Institut Fourier
%D 2014
%P 2037-2066
%V 64
%N 5
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.2903/
%R 10.5802/aif.2903
%G en
%F AIF_2014__64_5_2037_0
Kappes, André. Lyapunov Exponents of Rank $2$-Variations of Hodge Structures and Modular Embeddings. Annales de l'Institut Fourier, Tome 64 (2014) no. 5, pp. 2037-2066. doi : 10.5802/aif.2903. http://www.numdam.org/articles/10.5802/aif.2903/

[1] Bainbridge, M. Euler characteristics of Teichmüller curves in genus two, Geom. Topol., Volume 11 (2007), pp. 1887-2073 | DOI | MR | Zbl

[2] Bauer, Oliver Familien von Jacobivarietäten über Origamikurven, Universitätsverlag, Karlsruhe, 2009

[3] Bouw, I.; Möller, M. Teichmüller curves, triangle groups, and Lyapunov exponents, Ann. of Math. (2), Volume 172 (2010) no. 1, pp. 139-185 | DOI | MR | Zbl

[4] Carlson, J.; Müller-Stach, S.; Peters, C. Period mappings and period domains, Cambridge Studies in Advanced Mathematics, 85, Cambridge University Press, Cambridge, 2003, pp. xvi+430 | MR | Zbl

[5] Cohen, P.; Wolfart, J. Modular embeddings for some nonarithmetic Fuchsian groups, Acta Arith., Volume 56 (1990) no. 2, pp. 93-110 | EuDML | MR | Zbl

[6] Deligne, P. Un théorèeme de finitude pour la monodromie, Discrete groups in geometry and analysis (New Haven, Conn., 1984) (Progr. Math.), Volume 67, Birkhäuser Boston, Boston, MA, 1987, pp. 1-19 | MR | Zbl

[7] Ellenberg, Jordan S. Endomorphism algebras of Jacobians, Adv. Math., Volume 162 (2001) no. 2, pp. 243-271 | DOI | MR | Zbl

[8] Eskin, A.; Kontsevich, M.; Zorich, A. Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow (2010) to appear in Publications de l’IHES (2014) vol. 120, issue 1, arXiv: math.AG/1112.5872 | Numdam | MR | Zbl

[9] Eskin, Alex; Kontsevich, Maxim; Zorich, Anton Lyapunov spectrum of square-tiled cyclic covers, J. Mod. Dyn., Volume 5 (2011) no. 2, pp. 319-353 | DOI | MR | Zbl

[10] Finster, Myriam Stabilisatorgruppen in Aut(F z ) und Veechgruppen von Überlagerungen, Universität Karlsruhe, Fakultät für Mathematik (2008) (diploma thesis)

[11] Forni, G. Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. of Math. (2), Volume 155 (2002) no. 1, pp. 1-103 | DOI | MR | Zbl

[12] Gutkin, E.; Judge, C. Affine mappings of translation surfaces: geometry and arithmetic, Duke Math. J., Volume 103 (2000) no. 2, pp. 191-213 | DOI | MR | Zbl

[13] Herrlich, Frank Teichmüller curves defined by characteristic origamis, The geometry of Riemann surfaces and abelian varieties (Contemp. Math.), Volume 397, Amer. Math. Soc., Providence, RI, 2006, pp. 133-144 | DOI | MR | Zbl

[14] Herrlich, Frank; Schmithüsen, Gabriela On the boundary of Teichmüller disks in Teichmüller and in Schottky space, Handbook of Teichmüller theory. Vol. I (IRMA Lect. Math. Theor. Phys.), Volume 11, Eur. Math. Soc., Zürich, 2007, pp. 293-349 | DOI | MR | Zbl

[15] Hubert, Pascal; Schmidt, Thomas A. An introduction to Veech surfaces, Handbook of dynamical systems. Vol. 1B, Elsevier B. V., Amsterdam, 2006, pp. 501-526 | DOI | MR | Zbl

[16] Kappes, André Monodromy Representations and Lyapunov Exponents of Origamis, Karlsruhe Institute of Technology (2011) http://digbib.ubka.uni-karlsruhe.de/volltexte/1000024435 (Ph. D. Thesis)

[17] Kappes, André; Möller, Martin Lyapunov spectrum of ball quotients with applications to commensurability questions, 2012 (to appear in Duke Math. J., arXiv:math/1207.5433)

[18] Kontsevich, M.; Zorich, A. Lyapunov exponents and Hodge theory, 1997 (arXiv:hep-th/9701164) | Zbl

[19] Kontsevich, Maxim; Zorich, Anton Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., Volume 153 (2003) no. 3, pp. 631-678 | DOI | MR | Zbl

[20] Matheus, C.; Yoccoz, J.-C.; Zmiaikou, D. Homology of origamis with symmetries (2012) (to appear in Annales de l’Institut Fourier, Volume 64, 2014, arXiv:1207.2423)

[21] McMullen, C. Billiards and Teichmüller curves on Hilbert modular surfaces, J. Amer. Math. Soc., Volume 16 (2003) no. 4, pp. 857-885 | DOI | MR | Zbl

[22] Möller, M. Variations of Hodge structures of a Teichmüller curve, J. Amer. Math. Soc., Volume 19 (2006) no. 2, p. 327-344 (electronic) | DOI | MR | Zbl

[23] Möller, M. Teichmüller curves, mainly from the point of view of algebraic geometry, Moduli spaces of Riemann surfaces (IAS/Park City Math. Ser.), Volume 20, Amer. Math. Soc., Providence, RI, 2013, pp. 267-318

[24] Schmithüsen, G. An algorithm for finding the Veech group of an origami, Experiment. Math., Volume 13 (2004) no. 4, pp. 459-472 http://projecteuclid.org/getRecord?id=euclid.em/1109106438 | DOI | MR | Zbl

[25] Shiga, H. On holomorphic mappings of complex manifolds with ball model, J. Math. Soc. Japan, Volume 56 (2004) no. 4, pp. 1087-1107 | DOI | MR | Zbl

[26] Stillwell, John Classical topology and combinatorial group theory, Graduate texts in mathematics ; 72, Springer, New York, 1980 | MR | Zbl

[27] Weiss, C. Twisted Teichmüller curves, 2012 (Ph.D. Thesis, J. W. Goethe-Universität Frankfurt)

[28] Wright, Alex Schwarz triangle mappings and Teichmüller curves: Abelian square-tiled surfaces, J. Mod. Dyn., Volume 3 (2012) no. 1, pp. 405-426 | DOI | MR | Zbl

[29] Wright, Alex Schwarz triangle mappings and Teichmüller curves: The Veech-Ward-Bouw-Möller-Teichmüller curves, Geom. Funct. Anal., Volume 23 (2013) no. 2, pp. 776-809 | DOI | MR | Zbl

[30] Zimmer, Robert J. Ergodic theory and semisimple groups, Monographs in Mathematics, 81, Birkhäuser Verlag, Basel, 1984, pp. x+209 | MR | Zbl

[31] Zmiaikou, David Origamis and permutation groups, University Paris-Sud 11, Orsay (2011) (Ph. D. Thesis)

Cité par Sources :