Invertible polynomial mappings via Newton non-degeneracy
[Applications polynomiales inversibles et non-dégénérescence des polyèdres de Newton]
Annales de l'Institut Fourier, Tome 64 (2014) no. 5, pp. 1807-1822.

On démontre une condition suffisante pour le problème Jacobien dans le contexte des applications polynomiales réelles, complexes ou mixtes. Ceci résulte de l’étude de l’ensemble de bifurcation d’une application soumise à une nouvelle condition de non-dégénérescence par rapport aux polyèdres de Newton à l’infini.

We prove a sufficient condition for the Jacobian problem in the setting of real, complex and mixed polynomial mappings. This follows from the study of the bifurcation locus of a mapping subject to a new Newton non-degeneracy condition.

DOI : 10.5802/aif.2897
Classification : 14D06, 58K05, 57R45, 14P10, 32S20, 58K15
Keywords: real and complex polynomial mappings, bifurcation locus, Jacobian problem, Newton polyhedron, regularity at infinity
Mot clés : applications polynomiales réelles ou complexes, ensemble de bifurcation, problème Jacobien, polyèdre de Newton, regularité à l’infini
Chen, Ying 1 ; Dias, Luis Renato G. 1 ; Takeuchi, Kiyoshi 2 ; Tibăr, Mihai 3

1 Universidade de São Paulo ICMC Av. Trabalhador São-Carlense, 400 CP Box 668, 13560-970 São Carlos São Paulo (Brazil)
2 University of Tsukuba Institute of Mathematics 1-1-1, Tennodai, Tsukuba Ibaraki, 305-8571 (Japon)
3 Université Lille 1 Mathématiques, Laboratoire Paul Painlevé 59655 Villeneuve d’Ascq (France)
@article{AIF_2014__64_5_1807_0,
     author = {Chen, Ying and Dias, Luis Renato G. and Takeuchi, Kiyoshi and Tib\u{a}r, Mihai},
     title = {Invertible polynomial mappings via {Newton} non-degeneracy},
     journal = {Annales de l'Institut Fourier},
     pages = {1807--1822},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {64},
     number = {5},
     year = {2014},
     doi = {10.5802/aif.2897},
     zbl = {06387324},
     mrnumber = {3330924},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2897/}
}
TY  - JOUR
AU  - Chen, Ying
AU  - Dias, Luis Renato G.
AU  - Takeuchi, Kiyoshi
AU  - Tibăr, Mihai
TI  - Invertible polynomial mappings via Newton non-degeneracy
JO  - Annales de l'Institut Fourier
PY  - 2014
SP  - 1807
EP  - 1822
VL  - 64
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2897/
DO  - 10.5802/aif.2897
LA  - en
ID  - AIF_2014__64_5_1807_0
ER  - 
%0 Journal Article
%A Chen, Ying
%A Dias, Luis Renato G.
%A Takeuchi, Kiyoshi
%A Tibăr, Mihai
%T Invertible polynomial mappings via Newton non-degeneracy
%J Annales de l'Institut Fourier
%D 2014
%P 1807-1822
%V 64
%N 5
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.2897/
%R 10.5802/aif.2897
%G en
%F AIF_2014__64_5_1807_0
Chen, Ying; Dias, Luis Renato G.; Takeuchi, Kiyoshi; Tibăr, Mihai. Invertible polynomial mappings via Newton non-degeneracy. Annales de l'Institut Fourier, Tome 64 (2014) no. 5, pp. 1807-1822. doi : 10.5802/aif.2897. http://www.numdam.org/articles/10.5802/aif.2897/

[1] Białynicki-Birula, Andrzej; Rosenlicht, Maxwell Injective morphisms of real algebraic varieties, Proc. Amer. Math. Soc., Volume 13 (1962), pp. 200-203 | DOI | MR | Zbl

[2] Bivià-Ausina, Carles Injectivity of real polynomial maps and Łojasiewicz exponents at infinity, Math. Z., Volume 257 (2007) no. 4, pp. 745-767 | DOI | MR | Zbl

[3] Broughton, S. A. On the topology of polynomial hypersurfaces, Singularities, Part 1 (Arcata, Calif., 1981) (Proc. Sympos. Pure Math.), Volume 40, Amer. Math. Soc., Providence, RI, 1983, pp. 167-178 | MR | Zbl

[4] Broughton, S. A. Milnor numbers and the topology of polynomial hypersurfaces, Invent. Math., Volume 92 (1988) no. 2, pp. 217-241 | DOI | MR | Zbl

[5] Chen, Ying; Dias, L. R. G.; Tibăr, M. On Newton non-degeneracy of polynomial mappings (arXiv:1207.1612)

[6] Chen, Ying; Tibăr, Mihai Bifurcation values and monodromy of mixed polynomials, Math. Res. Lett., Volume 19 (2012) no. 1, pp. 59-79 | DOI | MR | Zbl

[7] Cynk, Sławomir; Rusek, Kamil Injective endomorphisms of algebraic and analytic sets, Ann. Polon. Math., Volume 56 (1991) no. 1, pp. 29-35 | MR | Zbl

[8] Dias, L. R. G.; Ruas, M. A. S.; Tibăr, M. Regularity at infinity of real mappings and a Morse-Sard theorem, J. Topol., Volume 5 (2012) no. 2, pp. 323-340 | DOI | MR | Zbl

[9] Durfee, Alan H. Five definitions of critical point at infinity, Singularities (Oberwolfach, 1996) (Progr. Math.), Volume 162, Birkhäuser, Basel, 1998, pp. 345-360 | MR | Zbl

[10] van den Essen, Arno Polynomial automorphisms and the Jacobian conjecture, Progress in Mathematics, 190, Birkhäuser Verlag, Basel, 2000, pp. xviii+329 | DOI | Zbl

[11] Esterov, Alexander; Takeuchi, Kiyoshi Motivic Milnor fibers over complete intersection varieties and their virtual Betti numbers, Int. Math. Res. Not. IMRN (2012) no. 15, pp. 3567-3613 | DOI | MR | Zbl

[12] Gaffney, Terence Fibers of polynomial mappings at infinity and a generalized Malgrange condition, Compositio Math., Volume 119 (1999) no. 2, pp. 157-167 | DOI | MR | Zbl

[13] Grothendieck, A. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I, Inst. Hautes Études Sci. Publ. Math. (1964) no. 20, pp. 259 | EuDML | Numdam | Zbl

[14] Hà, H. V.; Lê, D. T. Sur la topologie des polynômes complexes, Acta Math. Vietnam, Volume 9 (1984) no. 1, pp. 21-32 | Zbl

[15] Jelonek, Zbigniew Testing sets for properness of polynomial mappings, Math. Ann., Volume 315 (1999) no. 1, pp. 1-35 | DOI | MR | Zbl

[16] Jelonek, Zbigniew On asymptotic critical values and the Rabier theorem, Geometric singularity theory (Banach Center Publ.), Volume 65, Polish Acad. Sci., Warsaw, 2004, pp. 125-133 | DOI | MR | Zbl

[17] Kurdyka, K.; Orro, P.; Simon, S. Semialgebraic Sard theorem for generalized critical values, J. Differential Geom., Volume 56 (2000) no. 1, pp. 67-92 http://projecteuclid.org/getRecord?id=euclid.jdg/1090347525 | MR | Zbl

[18] Kushnirenko, A. Polyèdres de Newton et nombres de Milnor, Invent. Math., Volume 32 (1976), pp. 1-31 | DOI | EuDML | Zbl

[19] Matsui, Yutaka; Takeuchi, Kiyoshi Monodromy zeta functions at infinity, Newton polyhedra and constructible sheaves, Math. Z., Volume 268 (2011) no. 1-2, pp. 409-439 | DOI | MR | Zbl

[20] Némethi, András; Zaharia, Alexandru On the bifurcation set of a polynomial function and Newton boundary, Publ. Res. Inst. Math. Sci., Volume 26 (1990) no. 4, pp. 681-689 | DOI | MR | Zbl

[21] Némethi, András; Zaharia, Alexandru Milnor fibration at infinity, Indag. Math. (N.S.), Volume 3 (1992) no. 3, pp. 323-335 | DOI | MR | Zbl

[22] Nguyen, T. T. Bifurcation set, M-tameness, asymptotic critical values and Newton polyhedrons, Kodai Math. J., Volume 36 (2013) no. 1, pp. 77-90 | DOI | MR | Zbl

[23] Oka, Mutsuo Non-degenerate complete intersection singularity, Actualités Mathématiques. [Current Mathematical Topics], Hermann, Paris, 1997, pp. viii+309 | MR | Zbl

[24] Oka, Mutsuo Topology of polar weighted homogeneous hypersurfaces, Kodai Math. J., Volume 31 (2008) no. 2, pp. 163-182 | DOI | MR | Zbl

[25] Oka, Mutsuo Non-degenerate mixed functions, Kodai Math. J., Volume 33 (2010) no. 1, pp. 1-62 | DOI | MR | Zbl

[26] Parusiński, Adam On the bifurcation set of complex polynomial with isolated singularities at infinity, Compositio Math., Volume 97 (1995) no. 3, pp. 369-384 | EuDML | Numdam | MR | Zbl

[27] Pinchuk, Sergey A counterexample to the strong real Jacobian conjecture, Math. Z., Volume 217 (1994) no. 1, pp. 1-4 | DOI | EuDML | MR | Zbl

[28] Rabier, Patrick J. Ehresmann fibrations and Palais-Smale conditions for morphisms of Finsler manifolds, Ann. of Math. (2), Volume 146 (1997) no. 3, pp. 647-691 | DOI | MR | Zbl

[29] Siersma, Dirk; Tibăr, Mihai Singularities at infinity and their vanishing cycles, Duke Math. J., Volume 80 (1995) no. 3, pp. 771-783 | DOI | MR | Zbl

[30] Suzuki, Masakazu Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l’espace C 2 , J. Math. Soc. Japan, Volume 26 (1974), pp. 241-257 | DOI | MR | Zbl

[31] Tibăr, Mihai Regularity at infinity of real and complex polynomial functions, Singularity theory (Liverpool, 1996) (London Math. Soc. Lecture Note Ser.), Volume 263, Cambridge Univ. Press, Cambridge, 1999, pp. xx, 249-264 | MR | Zbl

[32] Tibăr, Mihai Polynomials and vanishing cycles, Cambridge Tracts in Mathematics, 170, Cambridge University Press, Cambridge, 2007, pp. xii+253 | DOI | MR | Zbl

[33] Tibăr, Mihai; Zaharia, Alexandru Asymptotic behaviour of families of real curves, Manuscripta Math., Volume 99 (1999) no. 3, pp. 383-393 | DOI | MR | Zbl

[34] Verdier, Jean-Louis Stratifications de Whitney et théorème de Bertini-Sard, Invent. Math., Volume 36 (1976), pp. 295-312 | DOI | EuDML | MR | Zbl

Cité par Sources :