On étudie le problème de Cauchy pour le système de Navier-Stokes barotrope dans
Here we investigate the Cauchy problem for the barotropic Navier-Stokes equations in
Keywords: Compressible fluids, uniqueness, critical regularity, Lagrangian coordinates
Mot clés : fluides compressibles, unicité, régularité critique, coordonnées lagrangiennes
@article{AIF_2014__64_2_753_0, author = {Danchin, Rapha\"el}, title = {A {Lagrangian} approach for the compressible {Navier-Stokes} equations}, journal = {Annales de l'Institut Fourier}, pages = {753--791}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {64}, number = {2}, year = {2014}, doi = {10.5802/aif.2865}, zbl = {06387292}, mrnumber = {3330922}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2865/} }
TY - JOUR AU - Danchin, Raphaël TI - A Lagrangian approach for the compressible Navier-Stokes equations JO - Annales de l'Institut Fourier PY - 2014 SP - 753 EP - 791 VL - 64 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2865/ DO - 10.5802/aif.2865 LA - en ID - AIF_2014__64_2_753_0 ER -
%0 Journal Article %A Danchin, Raphaël %T A Lagrangian approach for the compressible Navier-Stokes equations %J Annales de l'Institut Fourier %D 2014 %P 753-791 %V 64 %N 2 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2865/ %R 10.5802/aif.2865 %G en %F AIF_2014__64_2_753_0
Danchin, Raphaël. A Lagrangian approach for the compressible Navier-Stokes equations. Annales de l'Institut Fourier, Tome 64 (2014) no. 2, pp. 753-791. doi : 10.5802/aif.2865. https://www.numdam.org/articles/10.5802/aif.2865/
[1] Fourier analysis and nonlinear partial differential equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 343, Springer, Heidelberg, 2011, pp. xvi+523 | MR | Zbl
[2] Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. (4), Volume 14 (1981) no. 2, pp. 209-246 | Numdam | MR | Zbl
[3] A global existence result for the compressible Navier-Stokes equations in the critical
[4] Global well-posedness for compressible Navier-Stokes equations with highly oscillating initial velocity, Comm. Pure Appl. Math., Volume 63 (2010) no. 9, pp. 1173-1224 | MR | Zbl
[5] Well-posedness in critical spaces for the compressible Navier-Stokes equations with density dependent viscosities, Rev. Mat. Iberoam., Volume 26 (2010) no. 3, pp. 915-946 | DOI | MR | Zbl
[6] Unique solvability of the initial boundary value problems for compressible viscous fluids, J. Math. Pures Appl. (9), Volume 83 (2004) no. 2, pp. 243-275 | DOI | MR | Zbl
[7] Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., Volume 141 (2000) no. 3, pp. 579-614 | DOI | MR | Zbl
[8] On the uniqueness in critical spaces for compressible Navier-Stokes equations, NoDEA Nonlinear Differential Equations Appl., Volume 12 (2005) no. 1, pp. 111-128 | DOI | MR | Zbl
[9] Well-posedness in critical spaces for barotropic viscous fluids with truly not constant density, Comm. Partial Differential Equations, Volume 32 (2007) no. 7-9, pp. 1373-1397 | DOI | MR | Zbl
[10] Local theory in critical spaces for compressible viscous and heat-conductive gases, Comm. Partial Differential Equations, Volume 26 (2001) no. 7-8, pp. 1183-1233 | DOI | MR | Zbl
[11] On the solvability of the compressible Navier-Stokes system in bounded domains, Nonlinearity, Volume 23 (2010) no. 2, pp. 383-407 | DOI | MR | Zbl
[12] On the well-posedness of the incompressible density-dependent Euler equations in the
[13] Fourier analysis methods for compressible flows (2012) (Topics on compressible Navier-Stokes equations, États de la recherche SMF, Chambéry)
[14] A Lagrangian approach for the incompressible Navier-Stokes equations with variable density, Comm. Pure Appl. Math., Volume 65 (2012) no. 10, pp. 1458-1480 | DOI | MR | Zbl
[15] Weak-strong uniqueness for the isentropic compressible Navier-Stokes system, J. Math. Fluid Mech., Volume 13 (2011) no. 1, pp. 137-146 | DOI | MR | Zbl
[16] Existence of global strong solutions in critical spaces for barotropic viscous fluids, Arch. Ration. Mech. Anal., Volume 202 (2011) no. 2, pp. 427-460 | DOI | MR
[17] Well-posedness in critical spaces for the system of compressible Navier-Stokes in larger spaces, J. Differential Equations, Volume 251 (2011) no. 8, pp. 2262-2295 | DOI | MR | Zbl
[18] Uniqueness of weak solutions of the Navier-Stokes equations of multidimensional, compressible flow, SIAM J. Math. Anal., Volume 37 (2006) no. 6, p. 1742-1760 (electronic) | DOI | MR | Zbl
[19] Lectures on elliptic and parabolic equations in Sobolev spaces, Graduate Studies in Mathematics, 96, American Mathematical Society, Providence, RI, 2008, pp. xviii+357 | MR | Zbl
[20] Mathematical topics in fluid mechanics. Vol. 2, Oxford Lecture Series in Mathematics and its Applications, 10, The Clarendon Press, Oxford University Press, New York, 1998, pp. xiv+348 (Compressible models, Oxford Science Publications) | MR | Zbl
[21] The Cauchy problem for the compressible Navier-Stokes equations in the
[22] An existence theorem for compressible viscous fluids, Ann. Mat. Pura Appl. (4), Volume 130 (1982), pp. 197-213 | DOI | MR | Zbl
[23] Navier-Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case, Comm. Math. Phys., Volume 103 (1986) no. 2, pp. 259-296 | DOI | MR | Zbl
Cité par Sources :