[Formes normales avec reste exponentiellement petit et normalisation Gevrey pour les champs de vecteurs avec une partie linéaire nilpotente]
Nous investiguons la convergence/divergence de la forme normale d’une singularité d’un champ de vecteurs de avec une partie linéaire nilpotente. Nous prouvons que chaque champ de vecteurs Gevrey- avec une partie linéaire nilpotente peut être réduit à une forme normale Gevrey- en utilisant une transformation Gevrey-. Nous prouvons également que si on arrête la procédure de normalisation à un certain ordre optimal, le reste de la forme normale devient exponentiellement petit.
We explore the convergence/divergence of the normal form for a singularity of a vector field on with nilpotent linear part. We show that a Gevrey- vector field with a nilpotent linear part can be reduced to a normal form of Gevrey- type with the use of a Gevrey- transformation. We also give a proof of the existence of an optimal order to stop the normal form procedure. If one stops the normal form procedure at this order, the remainder becomes exponentially small.
Keywords: normal forms, nilpotent linear part, representation theory, Gevrey normalization
Mot clés : formes normales, partie linéaire nilpotente, normalisation Gevrey
@article{AIF_2012__62_6_2211_0, author = {Bonckaert, Patrick and Verstringe, Freek}, title = {Normal forms with exponentially small remainder and {Gevrey} normalization for vector fields with a nilpotent linear part}, journal = {Annales de l'Institut Fourier}, pages = {2211--2225}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {62}, number = {6}, year = {2012}, doi = {10.5802/aif.2747}, zbl = {1278.37044}, mrnumber = {3060756}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2747/} }
TY - JOUR AU - Bonckaert, Patrick AU - Verstringe, Freek TI - Normal forms with exponentially small remainder and Gevrey normalization for vector fields with a nilpotent linear part JO - Annales de l'Institut Fourier PY - 2012 SP - 2211 EP - 2225 VL - 62 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2747/ DO - 10.5802/aif.2747 LA - en ID - AIF_2012__62_6_2211_0 ER -
%0 Journal Article %A Bonckaert, Patrick %A Verstringe, Freek %T Normal forms with exponentially small remainder and Gevrey normalization for vector fields with a nilpotent linear part %J Annales de l'Institut Fourier %D 2012 %P 2211-2225 %V 62 %N 6 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2747/ %R 10.5802/aif.2747 %G en %F AIF_2012__62_6_2211_0
Bonckaert, Patrick; Verstringe, Freek. Normal forms with exponentially small remainder and Gevrey normalization for vector fields with a nilpotent linear part. Annales de l'Institut Fourier, Tome 62 (2012) no. 6, pp. 2211-2225. doi : 10.5802/aif.2747. http://www.numdam.org/articles/10.5802/aif.2747/
[1] Divergence and summability of normal forms of systems of differential equations with nilpotent linear part, Ann. Fac. Sci. Toulouse Math. (6), Volume 13 (2004) no. 4, pp. 493-513 | Numdam | MR | Zbl
[2] Nilpotent normal forms and representation theory of , Multiparameter bifurcation theory (Arcata, Calif., 1985) (Contemp. Math.), Volume 56, Amer. Math. Soc., Providence, RI, 1986, pp. 31-51 | MR | Zbl
[3] A simple global characterization for normal forms of singular vector fields, Phys. D, Volume 29 (1987) no. 1-2, pp. 95-127 | DOI | MR | Zbl
[4] Introduction to Lie algebras and representation theory, Springer-Verlag, New York, 1972 (Graduate Texts in Mathematics, Vol. 9) | MR | Zbl
[5] Polynomial normal forms with exponentially small remainder for analytic vector fields, J. Differential Equations, Volume 212 (2005) no. 1, pp. 1-61 | DOI | MR | Zbl
[6] Normal forms of analytic perturbations of quasihomogeneous vector fields: rigidity, invariant analytic sets and exponentially small approximation. (Formes normales des perturbations analytiques des champs de vecteurs quasi-homogènes: rigidité, ensembles d’invariants analytiques et approximation exponentiellement petite.), Ann. Sci. Éc. Norm. Supér. (2010), pp. 659-718 | Numdam | MR | Zbl
[7] A preparation theorem for codimension-one foliations, Ann. of Math. (2), Volume 163 (2006) no. 2, pp. 709-722 | DOI | MR | Zbl
[8] Stanley decomposition for coupled Takens-Bogdanov systems, J. Nonlinear Math. Phys., Volume 17 (2010) no. 1, pp. 69-85 | DOI | MR | Zbl
[9] Normal forms and unfoldings for local dynamical systems, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003 | MR | Zbl
[10] The analytic and formal normal form for the nilpotent singularity, J. Differential Equations, Volume 179 (2002) no. 2, pp. 479-537 | DOI | MR | Zbl
[11] Multidimensional formal Takens normal form, Bull. Belg. Math. Soc. Simon Stevin, Volume 15 (2008) no. 5, Dynamics in perturbations, pp. 927-934 http://projecteuclid.org/getRecord?id=euclid.bbms/1228486416 | MR | Zbl
[12] Singularities of vector fields, Inst. Hautes Études Sci. Publ. Math. (1974) no. 43, pp. 47-100 | Numdam | MR | Zbl
Cité par Sources :