Soit une contraction positive, avec . Supposons analytique, au sens où il existe une constante telle que pour tout entier . Soit et soit l’espace des suites complexes à -variation forte bornée. On montre que pour tout , la suite appartient à pour presque tout , avec la majoration . Si l’on supprime l’hypothèse d’analyticité, on obtient une majoration , où désigne la moyenne ergodique de . On obtient également des résultats similaires pour les semi-groupes fortement continus de contractions positives sur .
Let be a positive contraction, with . Assume that is analytic, that is, there exists a constant such that for any integer . Let and let be the space of all complex sequences with a finite strong -variation. We show that for any , the sequence belongs to for almost every , with an estimate . If we remove the analyticity assumption, we obtain an estimate , where denotes the ergodic average of . We also obtain similar results for strongly continuous semigroups of positive contractions on -spaces.
Keywords: Ergodic theory, operators on $L^p$, strong $q$-variation, analytic semigroups.
Mot clés : Théorie ergodique, opérateurs sur $L^p$, $q$-variation forte, semi-groupes analytiques.
@article{AIF_2012__62_6_2069_0, author = {Le Merdy, Christian and Xu, Quanhua}, title = {Strong $q$-variation inequalities for analytic semigroups}, journal = {Annales de l'Institut Fourier}, pages = {2069--2097}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {62}, number = {6}, year = {2012}, doi = {10.5802/aif.2743}, zbl = {1269.47011}, mrnumber = {3060752}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2743/} }
TY - JOUR AU - Le Merdy, Christian AU - Xu, Quanhua TI - Strong $q$-variation inequalities for analytic semigroups JO - Annales de l'Institut Fourier PY - 2012 SP - 2069 EP - 2097 VL - 62 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2743/ DO - 10.5802/aif.2743 LA - en ID - AIF_2012__62_6_2069_0 ER -
%0 Journal Article %A Le Merdy, Christian %A Xu, Quanhua %T Strong $q$-variation inequalities for analytic semigroups %J Annales de l'Institut Fourier %D 2012 %P 2069-2097 %V 62 %N 6 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2743/ %R 10.5802/aif.2743 %G en %F AIF_2012__62_6_2069_0
Le Merdy, Christian; Xu, Quanhua. Strong $q$-variation inequalities for analytic semigroups. Annales de l'Institut Fourier, Tome 62 (2012) no. 6, pp. 2069-2097. doi : 10.5802/aif.2743. http://www.numdam.org/articles/10.5802/aif.2743/
[1] Dilations of positive contractions on spaces, Canad. Math. Bull., Volume 20 (1977), pp. 285-292 | MR | Zbl
[2] Transference of strong type maximal inequalities by separation-preserving representations, Amer. J. Math., Volume 113 (1991), pp. 47-74 | MR | Zbl
[3] Analyticity and discrete maximal regularity on -spaces, J. Funct. Anal., Volume 183 (2001), pp. 211-230 | MR | Zbl
[4] Pointwise ergodic theorems for arithmetic sets, Publ. Math. IHES, Volume 69 (1989), pp. 5-41 | Numdam | MR | Zbl
[5] Oscillation and variation for the Hilbert transform, Duke Math. J., Volume 105 (2000), pp. 59-83 | MR | Zbl
[6] Applications of transference: the version of von Neumann’s inequality and the Littlewood-Paley-Stein theory, Linear spaces and Approximation, Birkhäuser, Basel, 1978, pp. 53-67 | MR | Zbl
[7] Transference methods in analysis, CBMS 31, Amer. Math. Soc., 1977 | MR | Zbl
[8] Puissances d’un opérateur régularisant, Ann. Inst. H. Poincaré Probab. Statist., Volume 26 (1990) no. 3, pp. 419-436 | Numdam | MR | Zbl
[9] The -variation as an operator between maximal operators and singular integrals, J. Evol. Equ., Volume 9 (2009), pp. 81-102 | MR | Zbl
[10] Generalization of von Neumann’s spectral sets and integral representation of operators, Bull. Soc. Math. France, Volume 127 (1999), pp. 25-41 | Numdam | MR | Zbl
[11] Linear operators, Part 1, Pure and Applied Mathematics, 7, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958 | MR | Zbl
[12] Dilations of one parameter semigroups of positive contractions on -spaces, Canad. J. Math., Volume 48 (1997), pp. 726-748 | MR | Zbl
[13] Ergodic theorem for functions of normal operators (Russian), Funktsional. Anal. i Prilozhen., Volume 18 (1984), pp. 1-6 | MR | Zbl
[14] Semigroups of linear operators and applications, Oxford University Press, New York, 1985 | MR | Zbl
[15] Oscillation in ergodic theory, Ergodic Theory Dynam. Systems, Volume 18 (1998), pp. 889-935 | MR | Zbl
[16] Oscillation and variation inequalities for convolution powers, Ergodic Theory Dynam. Systems, Volume 21 (2001) no. 6, pp. 1809-1829 | MR | Zbl
[17] Strong variational and jump inequalities in harmonic analysis, Trans. Amer. Math. Soc., Volume 360 (2008), pp. 6711-6742 | MR | Zbl
[18] Variation inequalities for the Fejér and Poisson kernels, Trans. Amer. Math. Soc., Volume 356 (2004), pp. 4493-4518 | MR | Zbl
[19] Maximal theorems and square functions for analytic operators on -spaces to appear in J. London Math. Soc. (see also arXiv:1011.1360v1)
[20] Spectral localization, power boundedness and invariant subspaces under Ritt’s type condition, Studia Math., Volume 134 (1999), pp. 153-167 | MR | Zbl
[21] La variation d’ordre des semi-martingales (French), Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, Volume 36 (1976), pp. 295-316 | MR | Zbl
[22] Banach lattices, Springer, Berlin-Heidelberg-NewYork, 1991 | MR | Zbl
[23] A resolvent condition implying power boundedness, Studia Math., Volume 134 (1999), pp. 143-151 | MR | Zbl
[24] Convergence of iterations for linear equations, Birkhaüser, Basel, 1993 | MR | Zbl
[25] A variation norm Carleson theorem (Preprint 2010, arXiv:1011.1360v1)
[26] Semigroups of linear operators and applications to partial differential equations, Springer, 1983 | MR | Zbl
[27] An analogue of J. von Neumann’s inequality for the space (Russian), Dokl. Akad. Nauk SSSR, Volume 231 (1976) no. 3, pp. 359-542 | MR | Zbl
[28] Complex interpolation and regular operators between Banach lattices, Arch. Math. (Basel), Volume 62 (1994) no. 3, pp. 261-269 | MR | Zbl
[29] The strong -variation of martingale and orthogonal series, Probab. Th. Rel. Fields, Volume 77 (1988) no. 3, pp. 497-514 | MR | Zbl
[30] Topics in harmonic analysis related to the Littlewood-Paley theory, Ann. Math. Studies, Princeton University Press, 1970 | MR | Zbl
[31] A simple proof of the maximal ergodic theorem, Canad. J. Math., Volume 28 (1976), pp. 1073-1075 | MR | Zbl
[32] Functional Analysis, Springer Verlag, 1968
Cité par Sources :