[Espaliers généralisés, récurrence et symétrie]
We study infinite translation surfaces which are
Nous étudions les
Keywords: Infinite translation surfaces, Veech groups, lattices, straightline flow
Mots-clés : Surfaces de translation infini, Groupes de Veech, Reseau, Flot directionnel
Hooper, W. Patrick 1 ; Weiss, Barak 2
@article{AIF_2012__62_4_1581_0, author = {Hooper, W. Patrick and Weiss, Barak}, title = {Generalized {Staircases:} {Recurrence} and {Symmetry}}, journal = {Annales de l'Institut Fourier}, pages = {1581--1600}, publisher = {Association des Annales de l'Institut Fourier}, volume = {62}, number = {4}, year = {2012}, doi = {10.5802/aif.2730}, zbl = {1279.37035}, mrnumber = {3025751}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2730/} }
TY - JOUR AU - Hooper, W. Patrick AU - Weiss, Barak TI - Generalized Staircases: Recurrence and Symmetry JO - Annales de l'Institut Fourier PY - 2012 SP - 1581 EP - 1600 VL - 62 IS - 4 PB - Association des Annales de l'Institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2730/ DO - 10.5802/aif.2730 LA - en ID - AIF_2012__62_4_1581_0 ER -
%0 Journal Article %A Hooper, W. Patrick %A Weiss, Barak %T Generalized Staircases: Recurrence and Symmetry %J Annales de l'Institut Fourier %D 2012 %P 1581-1600 %V 62 %N 4 %I Association des Annales de l'Institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2730/ %R 10.5802/aif.2730 %G en %F AIF_2012__62_4_1581_0
Hooper, W. Patrick; Weiss, Barak. Generalized Staircases: Recurrence and Symmetry. Annales de l'Institut Fourier, Tome 62 (2012) no. 4, pp. 1581-1600. doi : 10.5802/aif.2730. https://www.numdam.org/articles/10.5802/aif.2730/
[1] A hyperelliptic realization of the horseshoe and baker maps, Ergodic Theory Dynam. Systems, Volume 26 (2006) no. 6, pp. 1749-1768 | DOI | MR | Zbl
[2]
, 2010 (in preparation)[3] Growth rate of surface homeomorphisms and flow equivalence, Ergodic Theory Dynam. Systems, Volume 5 (1985) no. 4, pp. 539-563 | DOI | MR | Zbl
[4] Affine mappings of translation surfaces: geometry and arithmetic, Duke Math. J., Volume 103 (2000) no. 2, pp. 191-213 | DOI | MR | Zbl
[5] An extraordinary origami curve, Math. Nachr., Volume 281 (2008) no. 2, pp. 219-237 | DOI | MR | Zbl
[6] Dynamics on an infinite surface with the lattice property (2008) (preprint)
[7] Infinitely generated Veech groups, Duke Math. J., Volume 123 (2004) no. 1, pp. 49-69 | DOI | MR | Zbl
[8] Infinite translation surfaces with infinitely generated Veech groups (2009) (preprint) | MR | Zbl
[9] DYNAMICS ON THE INFINITE STAIRCASE (2008) (preprint)
[10] Billiards on rational-angled triangles, Comment. Math. Helv., Volume 75 (2000) no. 1, pp. 65-108 | DOI | MR | Zbl
[11] A rational billiard flow is uniquely ergodic in almost every direction, Bull. Amer. Math. Soc. (N.S.), Volume 13 (1985) no. 2, pp. 141-142 | DOI | MR | Zbl
[12] Hausdorff dimension of sets of nonergodic measured foliations, Ann. of Math. (2), Volume 134 (1991) no. 3, pp. 455-543 | DOI | MR | Zbl
[13] Rational billiards and flat structures, Handbook of dynamical systems, Vol. 1A, North-Holland, Amsterdam, 2002, pp. 1015-1089 | MR | Zbl
[14] Hyperbolic manifolds and Kleinian groups, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1998 (Oxford Science Publications) | MR | Zbl
[15] Teichmüller geodesics of infinite complexity, Acta Math., Volume 191 (2003) no. 2, pp. 191-223 | DOI | MR | Zbl
[16] Veech groups of Loch Ness monsters, 2009 (http://arxiv.org/abs/0906.5268, preprint.) | arXiv
[17] On the classification of noncompact surfaces, Trans. Amer. Math. Soc., Volume 106 (1963), pp. 259-269 | DOI | MR | Zbl
[18] Cocycles on ergodic transformation groups, Macmillan Company of India, Ltd., Delhi, 1977 (Macmillan Lectures in Mathematics, Vol. 1) | MR | Zbl
[19] On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.), Volume 19 (1988) no. 2, pp. 417-431 | DOI | MR | Zbl
[20] Minimal stretch maps between hyperbolic surfaces, 1998 (eprint of 1986 preprint. See http://arxiv.org/abs/math/9801039.) | arXiv
[21] Infinite genus surfaces and irrational polygonal billiards, Geom. Dedicata (To appear) | arXiv | MR | Zbl
[22] Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math., Volume 97 (1989) no. 3, pp. 553-583 | DOI | MR | Zbl
[23] Topological transitivity of billiards in polygons, Mat. Zametki, Volume 18 (1975) no. 2, pp. 291-300 | MR | Zbl
[24] Flat surfaces, Frontiers in number theory, physics, and geometry. I, Springer, Berlin, 2006, pp. 437-583 | MR | Zbl
Cité par Sources :