Nous étudions l’effilement minimal dans le demi-espace pour une classe grande de mouvements brownien subordonnés. Nous montrons que le même test pour l’effilement minimal d’un sous-ensemble sous le graphe d’une fonction non-négative lipschitzienne est valable pour tous les processus dans la classe considérée. Dans le cas classique du mouvement brownien ce test a été démontré par Burdzy.
We study minimal thinness in the half-space for a large class of subordinate Brownian motions. We show that the same test for the minimal thinness of a subset of below the graph of a nonnegative Lipschitz function is valid for all processes in the considered class. In the classical case of Brownian motion this test was proved by Burdzy.
Keywords: Minimal thinness, subordinate Brownian motion, boundary Harnack principle, Green function, Martin kernel
Mot clés : effilement minimal, mouvement brownien subordonné, principe de Harnack à la frontiére, fonction de Green, noyau de Martin
@article{AIF_2012__62_3_1045_0, author = {Kim, Panki and Song, Renming and Vondra\v{c}ek, Zoran}, title = {Minimal thinness for subordinate {Brownian} motion in half-space}, journal = {Annales de l'Institut Fourier}, pages = {1045--1080}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {62}, number = {3}, year = {2012}, doi = {10.5802/aif.2716}, zbl = {1273.60096}, mrnumber = {3013816}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2716/} }
TY - JOUR AU - Kim, Panki AU - Song, Renming AU - Vondraček, Zoran TI - Minimal thinness for subordinate Brownian motion in half-space JO - Annales de l'Institut Fourier PY - 2012 SP - 1045 EP - 1080 VL - 62 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2716/ DO - 10.5802/aif.2716 LA - en ID - AIF_2012__62_3_1045_0 ER -
%0 Journal Article %A Kim, Panki %A Song, Renming %A Vondraček, Zoran %T Minimal thinness for subordinate Brownian motion in half-space %J Annales de l'Institut Fourier %D 2012 %P 1045-1080 %V 62 %N 3 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2716/ %R 10.5802/aif.2716 %G en %F AIF_2012__62_3_1045_0
Kim, Panki; Song, Renming; Vondraček, Zoran. Minimal thinness for subordinate Brownian motion in half-space. Annales de l'Institut Fourier, Tome 62 (2012) no. 3, pp. 1045-1080. doi : 10.5802/aif.2716. http://www.numdam.org/articles/10.5802/aif.2716/
[1] Classical potential theory, Springer Monographs in Mathematics, Springer-Verlag London Ltd., London, 2001 | MR
[2] Lévy processes, Cambridge Tracts in Mathematics, 121, Cambridge University Press, Cambridge, 1996 | MR | Zbl
[3] A minimum principle for positive harmonic functions, Ann. Acad. Sci. Fenn. Ser. A I No., Volume 372 (1965), pp. 7 | MR | Zbl
[4] Regular variation, Encyclopedia of Mathematics and its Applications, 27, Cambridge University Press, Cambridge, 1987 | MR | Zbl
[5] Potential theory. An analytic and probabilistic approach to balayage, Universitext, Springer-Verlag, Berlin, 1986 | MR | Zbl
[6] The boundary Harnack principle for the fractional Laplacian, Studia Math., Volume 123 (1997) no. 1, pp. 43-80 | MR | Zbl
[7] Representation of -harmonic functions in Lipschitz domains, Hiroshima Math. J., Volume 29 (1999) no. 2, pp. 227-243 http://projecteuclid.org/getRecord?id=euclid.hmj/1206125005 | MR | Zbl
[8] Potential analysis of stable processes and its extensions, Lecture Notes in Mathematics, 1980, Springer-Verlag, Berlin, 2009 (Edited by Piotr Graczyk and Andrzej Stos) | DOI | MR
[9] Brownian excursions and minimal thinness. I, Ann. Probab., Volume 15 (1987) no. 2, pp. 676-689 http://www.jstor.org/stable/2244068 | DOI | MR | Zbl
[10] Global heat kernel estimate for in half space like open sets, Preprint (2011) | MR
[11] Boundary Harnack principle , To appear in Trans. Amer. Math. Soc. (2011) | MR
[12] Sharp Green function estimates for in open sets and their applications, To appear in Illinois J. Math. (2011)
[13] Martin boundary and integral representation for harmonic functions of symmetric stable processes, J. Funct. Anal., Volume 159 (1998) no. 1, pp. 267-294 | DOI | MR | Zbl
[14] A minimum principle for positive harmonic functions, Proc. London Math. Soc. (3), Volume 33 (1976) no. 2, pp. 238-250 | DOI | MR | Zbl
[15] Classical potential theory and its probabilistic counterpart, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 262, Springer-Verlag, New York, 1984 | MR | Zbl
[16] Feine Topologie am Martinrand eines Standardprozesses, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, Volume 12 (1969), pp. 127-144 | DOI | MR | Zbl
[17] A short proof of Burdzy’s theorem on the angular derivative, Bull. London Math. Soc., Volume 23 (1991) no. 6, pp. 575-579 | DOI | MR | Zbl
[18] Boundary behavior of harmonic functions for truncated stable processes, J. Theoret. Probab., Volume 21 (2008) no. 2, pp. 287-321 | DOI | MR
[19] Boundary Harnack principle for subordinate Brownian motions, Stochastic Process. Appl., Volume 119 (2009) no. 5, pp. 1601-1631 | DOI | MR
[20] On the potential theory of one-dimensional subordinate Brownian motions with continuous components, Potential Anal., Volume 33 (2010) no. 2, pp. 153-173 | DOI | MR
[21] Potential theory of subordinate Brownian motions revisited, To appear in a volume in honor of Prof. Jiaan Yan (2011)
[22] Potential theory of subordinate Brownian motions with Gaussian components, Preprint (2011)
[23] Two-sided Green function estimates for killed subordinate Brownian motions, To appear in Proc. London Math. Soc. (2012) | DOI
[24] Markov processes and Martin boundaries. I, Illinois J. Math., Volume 9 (1965), pp. 485-526 | MR | Zbl
[25] Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel, Ann. Inst. Fourier, Grenoble, Volume 7 (1957), pp. 183-281 | DOI | Numdam | MR | Zbl
[26] Brownian motion and classical potential theory, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1978 (Probability and Mathematical Statistics) | MR | Zbl
[27] Green function estimates and Harnack inequality for subordinate Brownian motions, Potential Anal., Volume 25 (2006) no. 1, pp. 1-27 | DOI | MR
[28] Bernstein functions, de Gruyter Studies in Mathematics, 37, Walter de Gruyter & Co., Berlin, 2010 (Theory and applications) | MR
[29] La convolution dans faible de , Séminaire Choquet, 13e année (1973/74), Initiation à l’analyse, Exp. No. 14, Secrétariat Mathématique, Paris, 1975, pp. 10 | Numdam | MR | Zbl
[30] Une propriété des fonctions harmoniques positives, d’après Dahlberg, Séminaire de Théorie du Potentiel de Paris, No. 2 (Univ. Paris, Paris, 1975–1976), Springer, Berlin, 1976, p. 275-282. Lecture Notes in Math., Vol. 563 | MR | Zbl
Cité par Sources :