Soit un espace riemannien symétrique de type non-compact. On montre que la solution de l’équation de Schrödinger dépendante du temps sur , avec condition initiale de carré intégrable , est nulle en tout temps lorsque et la solution à un temps donné sont simultanément très rapidement décroissantes. La condition de décroissance rapide considérée est de type Beurling. Des conditions respectivement de types Gelfand-Shilov, Cowling-Price et Hardy en sont déduites.
Let be a Riemannian symmetric space of the noncompact type. We prove that the solution of the time-dependent Schrödinger equation on with square integrable initial condition is identically zero at all times whenever and the solution at a time are simultaneously very rapidly decreasing. The stated condition of rapid decrease is of Beurling type. Conditions respectively of Gelfand-Shilov, Cowling-Price and Hardy type are deduced.
Keywords: Uncertainty principle, Schrödinger equation, Helgason-Fourier transform, Beurling theorem, Hardy theorem
Mot clés : principe d’incertitude, équation de Schrödinger, transformée de Helgason-Fourier, théorème de Beurling, théorème de Hardy
@article{AIF_2012__62_3_859_0, author = {Pasquale, Angela and Sundari, Maddala}, title = {Uncertainty principles for the {Schr\"odinger} equation on {Riemannian} symmetric spaces of the noncompact type}, journal = {Annales de l'Institut Fourier}, pages = {859--886}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {62}, number = {3}, year = {2012}, doi = {10.5802/aif.2710}, zbl = {1253.43007}, mrnumber = {3013810}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2710/} }
TY - JOUR AU - Pasquale, Angela AU - Sundari, Maddala TI - Uncertainty principles for the Schrödinger equation on Riemannian symmetric spaces of the noncompact type JO - Annales de l'Institut Fourier PY - 2012 SP - 859 EP - 886 VL - 62 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2710/ DO - 10.5802/aif.2710 LA - en ID - AIF_2012__62_3_859_0 ER -
%0 Journal Article %A Pasquale, Angela %A Sundari, Maddala %T Uncertainty principles for the Schrödinger equation on Riemannian symmetric spaces of the noncompact type %J Annales de l'Institut Fourier %D 2012 %P 859-886 %V 62 %N 3 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2710/ %R 10.5802/aif.2710 %G en %F AIF_2012__62_3_859_0
Pasquale, Angela; Sundari, Maddala. Uncertainty principles for the Schrödinger equation on Riemannian symmetric spaces of the noncompact type. Annales de l'Institut Fourier, Tome 62 (2012) no. 3, pp. 859-886. doi : 10.5802/aif.2710. http://www.numdam.org/articles/10.5802/aif.2710/
[1] A basic inequality for scattering theory on Riemannian symmetric spaces of the noncompact type, Amer. J. Math., Volume 113 (1991) no. 3, pp. 391-398 | DOI | MR | Zbl
[2] Uncertainty principles like Hardy’s theorem on some Lie groups, J. Austral. Math. Soc., Volume 65 (1998) no. 3, pp. 289-302 | DOI | MR | Zbl
[3] Uniqueness of solutions to the Schrödinger equation on the Heisenberg group (2010) (arXiv:1006.5310)
[4] Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms, Rev. Mat. Iberoamericana, Volume 19 (2003) no. 1, pp. 23-55 | DOI | MR
[5] Uniqueness of solutions to Schrödinger equations on complex semi-simple Lie groups, Proc. Indian Acad. Sci. Math. Sci., Volume 117 (2007) no. 3, pp. 325-331 | DOI | MR
[6] The Hardy uncertainty principle revisited arXiv:1005.1543v1, to appear in Indiana Univ. Math. J., 59 (2010) | MR
[7] On the Radon transform of the rapidly decreasing functions on symmetric spaces. II., Hiroshima Math. J., Volume 1 (1971), pp. 161-169 | MR | Zbl
[8] Some properties of Fourier transform on Riemannian symmetric spaces, Lectures on harmonic analysis on Lie groups and other topics (Strasbourg, 1979) (Lecture Notes in Mathematics), Volume 14, Kyoto Univ., 1982, pp. 9-43 | MR | Zbl
[9] Hardy’s uncertainty principle, convexity and Schrödinger evolutions, J. Euro. Math. Soc., Volume 10 (2008), pp. 883-907 | DOI | MR
[10] The sharp Hardy uncertainty principle for Schrödinger evolutions, Duke Math. J., Volume 155 (2010) no. 1, pp. 163-187 | DOI | MR
[11] Uncertainty principles of Morgan type and Schrödinger evolutions, J. London Math. Soc., Volume 83 (2011) no. 1, pp. 187-207 | DOI | MR
[12] Harmonic analysis of spherical functions on real reductive groups, Springer Verlag, 1988 | MR | Zbl
[13] Differential geometry, Lie groups, and symmetric spaces, Academic Press, 1978 | MR | Zbl
[14] Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions, Academic Press, 1984 | MR | Zbl
[15] Geometric analysis on symmetric spaces, Mathematical Surveys and Monographs, 39, American Mathematical Society, 2008 | MR | Zbl
[16] The analysis of linear partial differential operators. I, Springer Verlag, 1990 | MR | Zbl
[17] A uniqueness theorem of Beurling for Fourier transform pairs, Ark. Mat., Volume 29 (1991) no. 2, pp. 237-240 | DOI | MR | Zbl
[18] Uniqueness properties of solutions of Schrödinger equations, J. Funct. Anal., Volume 232 (2006), pp. 90-136 | DOI | MR
[19] Partial differential equations, Springer-Verlag, 1991 | MR | Zbl
[20] Beurling’s theorem and characterization of heat kernel for Riemannian symmetric spaces of noncompact type, Canad. Math. Bull. (2007) no. 2, pp. 291-312 | DOI | MR
[21] Beurling’s theorem for Riemannian symmetric spaces. II, Proc. Amer. Math. Soc., Volume 136 (2008) no. 2, pp. 1841-1853 | MR
[22] Théorie des distributions, Hermann, Paris, 1966 | MR | Zbl
[23] The uncertainty principle on Riemannian symmetric spaces of the noncompact type, Proc. Amer. Math. Soc., Volume 128 (2000) no. 8, pp. 2493-2499 | DOI | MR
[24] An analogue of Hardy’s theorem for semi-simple Lie groups, Proc. Amer. Math. Soc., Volume 130 (2002) no. 4, pp. 1009-1017 | DOI | MR
[25] An introduction to the uncertainty principle. Hardy’s theorem on Lie groups, Birkhäuser, 2004 | MR
Cité par Sources :