À partir des caractérisations combinatoires des cellules de Kazhdan-Lusztig du groupe symétrique, on construit des bases “RSK” pour certains quotients du l’algèbre du groupe et de l’algèbre de Hecke. On étudie des applications à la théorie des invariants du groupe linéaire général sur divers anneaux de base et à la théorie des réprésentations, soit ordinaire ou modulaire, du groupe symétrique.
From the combinatorial characterizations of the right, left, and two-sided Kazhdan-Lusztig cells of the symmetric group, “ RSK bases” are constructed for certain quotients by two-sided ideals of the group ring and the Hecke algebra. Applications to invariant theory, over various base rings, of the general linear group and representation theory, both ordinary and modular, of the symmetric group are discussed.
Keywords: Symmetric group, Hecke algebra, Kazhdan-Lusztig basis, RSK correspondence
Mot clés : groupe symétrique, algèbre de Hecke, base de Kazhdan-Lusztig, correspondance de RSK, forme de RSK, cellules de Kazhdan-Lusztig, invariants multilinéaire, invariants de desseins, module de cellule, module de Specht, déterminant de Gram, conjecture de Carter
@article{AIF_2012__62_2_525_0, author = {Raghavan, K.~N. and Samuel, Preena and Subrahmanyam, K.~V.}, title = {RSK bases and {Kazhdan-Lusztig} cells}, journal = {Annales de l'Institut Fourier}, pages = {525--569}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {62}, number = {2}, year = {2012}, doi = {10.5802/aif.2687}, zbl = {1247.05265}, mrnumber = {2985509}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2687/} }
TY - JOUR AU - Raghavan, K. N. AU - Samuel, Preena AU - Subrahmanyam, K. V. TI - RSK bases and Kazhdan-Lusztig cells JO - Annales de l'Institut Fourier PY - 2012 SP - 525 EP - 569 VL - 62 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2687/ DO - 10.5802/aif.2687 LA - en ID - AIF_2012__62_2_525_0 ER -
%0 Journal Article %A Raghavan, K. N. %A Samuel, Preena %A Subrahmanyam, K. V. %T RSK bases and Kazhdan-Lusztig cells %J Annales de l'Institut Fourier %D 2012 %P 525-569 %V 62 %N 2 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2687/ %R 10.5802/aif.2687 %G en %F AIF_2012__62_2_525_0
Raghavan, K. N.; Samuel, Preena; Subrahmanyam, K. V. RSK bases and Kazhdan-Lusztig cells. Annales de l'Institut Fourier, Tome 62 (2012) no. 2, pp. 525-569. doi : 10.5802/aif.2687. http://www.numdam.org/articles/10.5802/aif.2687/
[1] Robinson-Schensted correspondence and left cells, Combinatorial methods in representation theory (Kyoto, 1998) (Adv. Stud. Pure Math.), Volume 28, Kinokuniya, Tokyo, 2000, pp. 1-20 | MR
[2] Éléments de mathématique, Fasc. XXIII, Hermann, Paris, 1973 (Livre II: Algèbre. Chapitre 8: Modules et anneaux semi-simples, Nouveau tirage de l’édition de 1958, Actualités Scientifiques et Industrielles, No. 1261) | MR | Zbl
[3] Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002 (Translated from the 1968 French original by Andrew Pressley) | MR | Zbl
[4] A characteristic free approach to invariant theory, Advances in Math., Volume 21 (1976) no. 3, pp. 330-354 | DOI | MR | Zbl
[5] Complete invariants for complex semisimple Hopf algebras, Math. Res. Lett., Volume 10 (2003) no. 5-6, pp. 571-586 | MR
[6] Representations of Hecke algebras of general linear groups, Proc. London Math. Soc. (3), Volume 52 (1986) no. 1, pp. 20-52 | DOI | MR | Zbl
[7] Blocks and idempotents of Hecke algebras of general linear groups, Proc. London Math. Soc. (3), Volume 54 (1987) no. 1, pp. 57-82 | DOI | MR | Zbl
[8] The -Schur algebra, Proc. London Math. Soc. (3), Volume 59 (1989) no. 1, pp. 23-50 | DOI | MR | Zbl
[9] Annihilators of permutation modules, Quart. J. Math., Volume 00 (2009), pp. 1-16 (http://qjmath.oxfordjournals.org/content/early/2009/06/04/qmath.hap020.abstract)
[10] Cells and -Schur algebras, Transform. Groups, Volume 3 (1998) no. 1, pp. 33-49 | DOI | MR | Zbl
[11] Some reducible Specht modules for Iwahori-Hecke algebras of type with (to appear)
[12] The hook graphs of the symmetric groups, Canadian J. Math., Volume 6 (1954), pp. 316-324 | DOI | MR | Zbl
[13] Young tableaux, London Mathematical Society Student Texts, 35, Cambridge University Press, Cambridge, 1997 (With applications to representation theory and geometry) | MR | Zbl
[14] Relations between Young’s natural and the Kazhdan-Lusztig representations of , Adv. in Math., Volume 69 (1988) no. 1, pp. 32-92 | DOI | MR | Zbl
[15] Kazhdan-Lusztig cells and the Murphy basis, Proc. London Math. Soc. (3), Volume 93 (2006) no. 3, pp. 635-665 | DOI | MR
[16] Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Mathematical Society Monographs. New Series, 21, The Clarendon Press Oxford University Press, New York, 2000 | MR
[17] Cellular algebras, Invent. Math., Volume 123 (1996) no. 1, pp. 1-34 (http://dx.doi.org/10.1007/BF01232365) | DOI | MR | Zbl
[18] On a conjecture of Carter concerning irreducible Specht modules, Math. Proc. Cambridge Philos. Soc., Volume 83 (1978) no. 1, pp. 11-17 | DOI | MR | Zbl
[19] A -analogue of the Jantzen-Schaper theorem, Proc. London Math. Soc. (3), Volume 74 (1997) no. 2, pp. 241-274 | DOI | MR | Zbl
[20] Representations of Coxeter groups and Hecke algebras, Invent. Math., Volume 53 (1979) no. 2, pp. 165-184 | DOI | MR | Zbl
[21] Hecke algebras with unequal parameters, CRM Monograph Series, 18, American Mathematical Society, Providence, RI, 2003 | MR
[22] On a theorem of Benson and Curtis, J. Algebra, Volume 71 (1981) no. 2, pp. 490-498 | DOI | MR | Zbl
[23] Iwahori-Hecke algebras and Schur algebras of the symmetric group, University Lecture Series, 15, American Mathematical Society, Providence, RI, 1999 | MR | Zbl
[24] On relations between the classical and the Kazhdan-Lusztig representations of symmetric groups and associated Hecke algebras, J. Pure Appl. Algebra, Volume 203 (2005) no. 1-3, pp. 133-144 | DOI | MR
[25] The representations of Hecke algebras of type , J. Algebra, Volume 173 (1995) no. 1, pp. 97-121 | DOI | MR | Zbl
[26] On an isomorphism between Specht module and left cell of , Tokyo J. Math., Volume 12 (1989) no. 2, pp. 247-267 | DOI | MR | Zbl
[27] The invariant theory of matrices, Advances in Math., Volume 19 (1976) no. 3, pp. 306-381 | DOI | MR | Zbl
[28] KRS bases for rings of invariants and for endomorphism spaces of irreducible modules (2009) (http://arxiv.org/abs/0902.2842v1)
[29] Identities with trace in full matrix algebras over a field of characteristic zero, Izv. Akad. Nauk SSSR Ser. Mat., Volume 38 (1974), pp. 723-756 | MR | Zbl
[30] The symmetric group, Graduate Texts in Mathematics, 203, Springer-Verlag, New York, 2001 (Representations, combinatorial algorithms, and symmetric functions) | MR
Cité par Sources :