Plusieurs exemples d’espaces de Banach séparables, dont certains sont nouveaux, sont analysés, et reliés à plusieurs dichotomies obtenues dans [11]. Ces exemples sont classifiés en fonction de quelle alternative de chaque dichotomie ils satisfont.
We analyse several examples of separable Banach spaces, some of them new, and relate them to several dichotomies obtained in [11],by classifying them according to which side of the dichotomies they fall.
Keywords: tight Banach spaces, dichotomies, classification of Banach spaces
Mot clés : espaces de Banach étroits, dichotomies, classification des espaces de Banach
@article{AIF_2012__62_2_439_0, author = {Ferenczi, Valentin and Rosendal, Christian}, title = {Banach spaces without minimal subspaces {\textendash} {Examples}}, journal = {Annales de l'Institut Fourier}, pages = {439--475}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {62}, number = {2}, year = {2012}, doi = {10.5802/aif.2684}, zbl = {1254.46011}, mrnumber = {2985506}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2684/} }
TY - JOUR AU - Ferenczi, Valentin AU - Rosendal, Christian TI - Banach spaces without minimal subspaces – Examples JO - Annales de l'Institut Fourier PY - 2012 SP - 439 EP - 475 VL - 62 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2684/ DO - 10.5802/aif.2684 LA - en ID - AIF_2012__62_2_439_0 ER -
%0 Journal Article %A Ferenczi, Valentin %A Rosendal, Christian %T Banach spaces without minimal subspaces – Examples %J Annales de l'Institut Fourier %D 2012 %P 439-475 %V 62 %N 2 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2684/ %R 10.5802/aif.2684 %G en %F AIF_2012__62_2_439_0
Ferenczi, Valentin; Rosendal, Christian. Banach spaces without minimal subspaces – Examples. Annales de l'Institut Fourier, Tome 62 (2012) no. 2, pp. 439-475. doi : 10.5802/aif.2684. http://www.numdam.org/articles/10.5802/aif.2684/
[1] An extremely non-homogeneous weak Hilbert space, Trans. Amer. Math. Soc. (to appear)
[2] A weak Hilbert space with few symmetries, C. R. Math. Acad. Sci. Paris, Volume 348 (2010) no. 23-24, pp. 1293-1296 | DOI | MR
[3] Examples of asymptotic Banach spaces, Trans. Amer. Math. Soc., Volume 349 (1997) no. 3, pp. 973-995 | DOI | MR | Zbl
[4] Modified mixed Tsirelson spaces, J. Funct. Anal., Volume 159 (1998) no. 1, pp. 43-109 | DOI | MR | Zbl
[5] A hereditarily indecomposable -space that solves the scalar-plus-compact problem, Acta Math., Volume 206 (2011) no. 1, pp. 1-54 | DOI | MR
[6] A coding of separable Banach spaces. Analytic and coanalytic families of Banach spaces, Fund. Math., Volume 172 (2002) no. 2, pp. 117-152 | DOI | MR | Zbl
[7] Some questions arising from the homogeneous Banach space problem, Banach spaces (Mérida, 1992) (Contemp. Math.), Volume 144, Amer. Math. Soc., Providence, RI, 1993, pp. 35-52 | MR | Zbl
[8] Tsirelson’s space, Lecture Notes in Mathematics, 1363, Springer-Verlag, Berlin, 1989 (With an appendix by J. Baker, O. Slotterbeck and R. Aron) | MR | Zbl
[9] On strongly asymptotically spaces and minimality, Journal of the London Math. Soc., Volume 75 (2007) no. 2, pp. 409-419 | DOI | MR
[10] Ergodic Banach spaces, Adv. Math., Volume 195 (2005) no. 1, pp. 259-282 | DOI | MR
[11] Banach spaces without minimal subspaces, J. Funct. Anal., Volume 257 (2009) no. 1, pp. 149-193 | DOI | MR
[12] A solution to Banach’s hyperplane problem, Bull. London Math. Soc., Volume 26 (1994) no. 6, pp. 523-530 | DOI | MR | Zbl
[13] A hereditarily indecomposable space with an asymptotic unconditional basis, Geometric aspects of functional analysis (Israel, 1992–1994) (Oper. Theory Adv. Appl.), Volume 77, Birkhäuser, Basel, 1995, pp. 112-120 | MR | Zbl
[14] A new dichotomy for Banach spaces, Geom. Funct. Anal., Volume 6 (1996) no. 6, pp. 1083-1093 | DOI | MR | Zbl
[15] An infinite Ramsey theorem and some Banach-space dichotomies, Ann. of Math. (2), Volume 156 (2002) no. 3, pp. 797-833 | DOI | MR
[16] The unconditional basic sequence problem, J. Amer. Math. Soc., Volume 6 (1993) no. 4, pp. 851-874 | DOI | MR | Zbl
[17] Minimality properties of Tsirelson type spaces, Studia Math., Volume 187 (2008) no. 3, pp. 233-263 | DOI | MR
[18] Quasi-minimality in mixed Tsirelson’s spaces, Math. Nachrichten (to appear)
[19] An arbitrarily distortable Banach space, Israel J. Math., Volume 76 (1991) no. 1-2, pp. 81-95 | DOI | MR | Zbl
[20] On the existence of asymptotic- structures in Banach spaces, Canad. Math. Bull., Volume 50 (2007) no. 4, pp. 619-631 | DOI | MR
[21] Not every Banach space contains or , Functional Anal. Appl., Volume 8 (1974), pp. 138-141 | DOI | Zbl
Cité par Sources :