Quand une surface abélienne complexe admet une décomposition en produit de deux courbes elliptiques, combien y a-t-il de telles décompositions possibles ? Nous donnons des formules arithmétiques pour le nombre de telles décompositions.
When a complex Abelian surface can be decomposed into a product of two elliptic curves, how many decompositions does the Abelian surface admit? We provide arithmetic formulae for the number of such decompositions.
Keywords: Abelian surface, elliptic curve, binary quadratic form
Mot clés : surface abélienne, courbe elliptique, forme quadratique
@article{AIF_2011__61_2_717_0, author = {Ma, Shouhei}, title = {Decompositions of an {Abelian} surface and quadratic forms}, journal = {Annales de l'Institut Fourier}, pages = {717--743}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {61}, number = {2}, year = {2011}, doi = {10.5802/aif.2627}, zbl = {1231.14036}, mrnumber = {2895071}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2627/} }
TY - JOUR AU - Ma, Shouhei TI - Decompositions of an Abelian surface and quadratic forms JO - Annales de l'Institut Fourier PY - 2011 SP - 717 EP - 743 VL - 61 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2627/ DO - 10.5802/aif.2627 LA - en ID - AIF_2011__61_2_717_0 ER -
%0 Journal Article %A Ma, Shouhei %T Decompositions of an Abelian surface and quadratic forms %J Annales de l'Institut Fourier %D 2011 %P 717-743 %V 61 %N 2 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2627/ %R 10.5802/aif.2627 %G en %F AIF_2011__61_2_717_0
Ma, Shouhei. Decompositions of an Abelian surface and quadratic forms. Annales de l'Institut Fourier, Tome 61 (2011) no. 2, pp. 717-743. doi : 10.5802/aif.2627. http://www.numdam.org/articles/10.5802/aif.2627/
[1] Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. (2), Volume 84 (1966), pp. 442-528 | DOI | MR | Zbl
[2] Complex abelian varieties. Second edition, Grundlehren der Mathematischen Wissenschaften, 302, Springer, 2004 | MR | Zbl
[3] Rational quadratic forms. London Mathematical Society Monographs, 13, Academic Press, 1978 | MR | Zbl
[4] Primes of the form , Wiley-Interscience, 1989 | MR | Zbl
[5] A class number associated with a product of two elliptic curves, Natur. Sci. Rep. Ochanomizu Univ., Volume 16 (1965), pp. 9-19 | MR | Zbl
[6] Fourier-Mukai number of a K3 surface, Algebraic structures and moduli spaces (CRM Proc. Lecture Notes), Volume 38, Amer. Math. Soc., Providence, 2004, pp. 177-192 | MR | Zbl
[7] Principal polarizations on products of elliptic curves, The geometry of Riemann surfaces and abelian varieties (Contemp. Math.), Volume 397, Amer. Math. Soc., Providence, 2006, pp. 153-162 | MR | Zbl
[8] Weierstrass points of , Ann. of Math. (2), Volume 79 (1964), pp. 360-368 | DOI | MR | Zbl
[9] Notes on small class numbers, Acta Arith., Volume 24 (1973/74), pp. 529-542 | MR | Zbl
[10] Integral symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat., Volume 43 (1979) no. 1, pp. 111-177 | MR | Zbl
[11] When is an abelian surface isomorphic or isogeneous to a product of elliptic curves?, Math. Z., Volume 203 (1990) no. 2, pp. 293-299 | DOI | MR | Zbl
[12] The period map of Abelian surfaces, J. Fac. Sci. Univ. Tokyo, Volume 25 (1978) no. 1, pp. 47-59 | MR | Zbl
[13] Singular abelian surfaces and binary quadratic forms, Classification of algebraic varieties and compact complex manifolds (Lecture Notes in Math.), Volume 412, Springer, 1974, pp. 259-287 | MR | Zbl
[14] On complex quadratic fields with class-number two, Math. Comp., Volume 29 (1975), pp. 289-302 | MR | Zbl
[15] The geometry of the classical groups, Sigma Series in Pure Mathematics, 9, Heldermann Verlag, 1992 | MR | Zbl
[16] Quadratic forms on finite groups, and related topics, Topology, Volume 2 (1963), pp. 281-298 | DOI | MR | Zbl
Cité par Sources :