L’étude des applications -holomorphes conduit à l’étude des inéquations , et . La première inéquation est facile à utiliser. La seconde, qui intervient naturellement dans les structures non lisses, est plus difficile. De façon intéressante, le cas d’applications vectorielles est différent du cas scalaire. Les questions étudiées ont trait à l’unicité de prolongement et aux zéros isolés. Parmi les résultats, il est démontré que, pour les structures presque complexes de classe Hölderienne , toute courbe -holomorphe constante sur un ouvert non vide, est constante. Ceci est en contraste avec des exemples immédiats de non-unicité.
The study of -holomorphic maps leads to the consideration of the inequations , and . The first inequation is fairly easy to use. The second one, that is relevant to the case of rough structures, is more delicate. The case of vector valued is strikingly different from the scalar valued case. Unique continuation and isolated zeroes are the main topics under study. One of the results is that, in almost complex structures of Hölder class , any -holomorphic curve that is constant on a non-empty open set, is constant. This is in contrast with immediate examples of non-uniqueness.
Keywords: $J$-holomorphic curves, differential inequalities, uniqueness
Mot clés : courbes $J$-holomophes, inégalités différentielles, unicité
@article{AIF_2010__60_6_2261_0, author = {Rosay, Jean-Pierre}, title = {Uniqueness in {Rough} {Almost} {Complex} {Structures,} and {Differential} {Inequalities}}, journal = {Annales de l'Institut Fourier}, pages = {2261--2273}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {60}, number = {6}, year = {2010}, doi = {10.5802/aif.2583}, zbl = {1211.32017}, mrnumber = {2791657}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2583/} }
TY - JOUR AU - Rosay, Jean-Pierre TI - Uniqueness in Rough Almost Complex Structures, and Differential Inequalities JO - Annales de l'Institut Fourier PY - 2010 SP - 2261 EP - 2273 VL - 60 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2583/ DO - 10.5802/aif.2583 LA - en ID - AIF_2010__60_6_2261_0 ER -
%0 Journal Article %A Rosay, Jean-Pierre %T Uniqueness in Rough Almost Complex Structures, and Differential Inequalities %J Annales de l'Institut Fourier %D 2010 %P 2261-2273 %V 60 %N 6 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2583/ %R 10.5802/aif.2583 %G en %F AIF_2010__60_6_2261_0
Rosay, Jean-Pierre. Uniqueness in Rough Almost Complex Structures, and Differential Inequalities. Annales de l'Institut Fourier, Tome 60 (2010) no. 6, pp. 2261-2273. doi : 10.5802/aif.2583. http://www.numdam.org/articles/10.5802/aif.2583/
[1] Non-unicité pour des opérateurs différentiels à caractéristiques complexes simples, Ann. Sci. École Norm. Sup. (4), Volume 13 (1980) no. 3, pp. 385-393 | Numdam | MR | Zbl
[2] Generalized solutions of a system of differential equations of the first order and elliptic type with discontinuous coefficients, Report. University of Jyväskylä Department of Mathematics and Statistics, 118, University of Jyväskylä, Jyväskylä, 2009 (Translated from the 1957 Russian original, With a foreword by Eero Saksman) | MR | Zbl
[3] Transversality in elliptic Morse theory for the symplectic action, Duke Math. J., Volume 80 (1995) no. 1, pp. 251-292 | DOI | MR | Zbl
[4] Differential inequalities of continuous functions and removing singularities of Rado type for -holomorphic maps, Math. Scand., Volume 101 (2007) no. 2, pp. 293-319 | MR | Zbl
[5] The analysis of linear partial differential operators. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 256, Springer-Verlag, Berlin, 1990 (Distribution theory and Fourier analysis) | MR
[6] The analysis of linear partial differential operators. III, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 274, Springer-Verlag, Berlin, 1994 (Pseudo-differential operators, Corrected reprint of the 1985 original) | MR | Zbl
[7] Notions of convexity, Progress in Mathematics, 127, Birkhäuser Boston Inc., Boston, MA, 1994 | MR | Zbl
[8] Boundary values and boundary uniqueness of -holomorphic mappings (arXiv:0902.4800)
[9] Schwarz-type lemmas for solutions of -inequalities and complete hyperbolicity of almost complex manifolds, Ann. Inst. Fourier (Grenoble), Volume 54 (2004) no. 7, p. 2387-2435 (2005) | DOI | Numdam | MR | Zbl
[10] Local properties of -complex curves in Lipschitz-continuous structures (arXiv:0707.0771)
[11] Lectures on the theory of several complex variables. Notes by Raghavan Narasimhan, Tata Institute of Fundamental Research, Bombay, 1958
[12] -holomorphic curves and quantum cohomology, University Lecture Series, 6, American Mathematical Society, Providence, RI, 1994 | MR | Zbl
[13] Notes on the Diederich-Sukhov-Tumanov normalization for almost complex structures, Collect. Math., Volume 60 (2009) no. 1, pp. 43-62 | DOI | MR | Zbl
[14] Some properties of holomorphic curves in almost complex manifolds, Holomorphic curves in symplectic geometry (Progr. Math.), Volume 117, Birkhäuser, Basel, 1994, pp. 165-189 | MR
Cité par Sources :