Nous classifions complètement les flots projectivement Anosov réguliers en dimension trois. Plus précisément, nous prouvons qu’un tel flot est un flot d’Anosov ou se décompose en une union finie de -modèles. Nous appliquons aussi notre méthode au problème de rigidité de certaines actions de groupes.
We give the complete classification of regular projectively Anosov flows on closed three-dimensional manifolds. More precisely, we show that such a flow must be either an Anosov flow or decomposed into a finite union of -models. We also apply our method to rigidity problems of some group actions.
Keywords: Projectively Anosov flows, bi-contact structures
Mot clés : flots projectivement Anosov, structures de bi-contact
@article{AIF_2010__60_5_1649_0, author = {Asaoka, Masayuki}, title = {Regular projectively {Anosov} flows on three-dimensional manifolds}, journal = {Annales de l'Institut Fourier}, pages = {1649--1684}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {60}, number = {5}, year = {2010}, doi = {10.5802/aif.2569}, zbl = {1202.37030}, mrnumber = {2766227}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2569/} }
TY - JOUR AU - Asaoka, Masayuki TI - Regular projectively Anosov flows on three-dimensional manifolds JO - Annales de l'Institut Fourier PY - 2010 SP - 1649 EP - 1684 VL - 60 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2569/ DO - 10.5802/aif.2569 LA - en ID - AIF_2010__60_5_1649_0 ER -
%0 Journal Article %A Asaoka, Masayuki %T Regular projectively Anosov flows on three-dimensional manifolds %J Annales de l'Institut Fourier %D 2010 %P 1649-1684 %V 60 %N 5 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2569/ %R 10.5802/aif.2569 %G en %F AIF_2010__60_5_1649_0
Asaoka, Masayuki. Regular projectively Anosov flows on three-dimensional manifolds. Annales de l'Institut Fourier, Tome 60 (2010) no. 5, pp. 1649-1684. doi : 10.5802/aif.2569. http://www.numdam.org/articles/10.5802/aif.2569/
[1] Homoclinic bifurcations and uniform hyperbolicity for three-dimensional flows, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 20 (2003), pp. 805-841 | DOI | Numdam | MR | Zbl
[2] Non-homogeneous locally free actions of the affine group (preprint. arXiv:math.0702833)
[3] A classification of three dimensional regular projectively Anosov flows, Proc. Japan Acad., Ser. A, Volume 80 (2004) no. 10, pp. 194-197 | DOI | MR | Zbl
[4] Classification of regular and non-degenerate projectively Anosov diffeomorphisms on three dimensional manifolds, J. Math. Kyoto Univ., Volume 46 (2006) no. 2, pp. 349-356 | MR | Zbl
[5] Codimension-one foliations with a transversely contracting flow, Foliations 2005, World Sci. Publ., Hackensack, NJ, 2006, pp. 21-36 | MR
[6] Caractérisation des flots d’Anosov en dimension 3 par leurs feuilletages faibles, Ergodic Theory Dynam. Systems, Volume 15 (1995) no. 2, pp. 247-270 | DOI | MR | Zbl
[7] Dynamics beyond uniform hyperbolicity, Encyclopaedia of Mathematical Sciences, 102, Springer-Verlag, Berlin, 2005 (A global geometric and probabilistic perspective, Mathematical Physics, III) | MR | Zbl
[8] Reeb stability for noncompact leaves in foliated 3-manifolds, Proc. Amer. Math. Soc., Volume 33 (1981) no. 2, pp. 408-410 | MR | Zbl
[9] The theory of levels, Index theory of elliptic operators, foliations, and operator algebras (New Orleans, LA/Indianapolis, IN, 1986) (Contemp. Math.), Volume 70, Amer. Math. Soc., Providence, RI, 1988, pp. 1-10 | MR | Zbl
[10] Endsets of exceptional leaves; a theorem of G. Duminy, Foliations: geometry and dynamics (Warsaw, 2000), World Sci. Publ., River Edge, NJ, 2002, pp. 225-261 | MR | Zbl
[11] One-dimensional dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 25, Springer-Verlag, Berlin, 1993 | MR | Zbl
[12] Persistently transitive vector fields on three-dimensional manifolds, Dynamical systems and bifurcation theory (Rio de Janeiro, 1985) (Pitman Res. Notes Math. Ser.), Volume 160, Longman Sci. Tech., Harlow, 1987, pp. 59-89 | MR | Zbl
[13] Confoliations, University Lecture Series, 13, American Mathematical Society, Providence, RI, 1998 | MR | Zbl
[14] Actions localement libres du groupe affine, Invent. Math., Volume 82 (1985) no. 3, pp. 479-526 | DOI | MR | Zbl
[15] Rigidité différentiable des groupes fuchiens, Inst. Hautes Études Sci. Publ. Math., Volume 78 (1993), pp. 163-185 | DOI | Numdam | MR | Zbl
[16] Stabilité et conjugaison différentiable pour certains feuilletages, Topology, Volume 19 (1980) no. 2, pp. 179-197 | DOI | MR | Zbl
[17] Piecewise smooth interval maps with non-vanishing derivative, Ergodic Theory Dynam. Systems, Volume 20 (2000) no. 3, pp. 749-773 | DOI | MR | Zbl
[18] Hyperbolicity, sinks and measure in one-dimensional dynamics, Comm. Math. Phys., Volume 100 (1985) no. 4, pp. 495-524 Erratum. Comm. Math. Phys. 112 (1987), no. 4, 721–724 | DOI | MR | Zbl
[19] Anosov flows and non-stein symplectic manifolds, Ann. Inst. Fourier, Volume 45 (1995) no. 5, pp. 1407-1421 | DOI | Numdam | MR | Zbl
[20] Foliations and contact structures on 3-manifolds, Foliations: geometry and dynamics (Warsaw, 2000), World Sci. Publ., River Edge, NJ, 2002, pp. 75-125 | MR | Zbl
[21] Relations de conjugaison et de cobordisme entre certains feuilletages, Inst. Hautes Études Sci. Publ. Math., Volume 43 (1974), pp. 142-168 | DOI | Numdam | MR | Zbl
[22] Hyperbolic nonwandering sets on two-dimensional manifolds, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), Academic Press, New York, 1973, pp. 293-301 | MR | Zbl
[23] Projectively Anosov flows with differentiable (un)stable foliations, Ann. Inst. Fourier, Volume 50 (2000) no. 5, pp. 1617-1647 | DOI | Numdam | MR | Zbl
[24] Regular projectively Anosov flows with compact leaves, Ann. Inst. Fourier, Volume 54 (2004) no. 2, pp. 353-363 | DOI | Numdam | MR | Zbl
[25] Regular projectively Anosov flows without compact leaves, Foliations: geometry and dynamics (Warsaw, 2000), World Sci. Publ., River Edge, NJ, 2002, pp. 403-419 | MR | Zbl
[26] Markov decomposition for an U-flow on a three-dimensional manifold, Mat. Zametki, Volume 6 (1969), pp. 693-704 (Translation to English) Math. Notes 6 1969, 880–886 | MR | Zbl
[27] Global stability of dynamical systems, Springer-Verlag, New York, 1987 (With the collaboration of Albert Fathi and Rémi Langevin, Translated from the French by Joseph Christy) | MR | Zbl
[28] Regular projectively Anosov flows on the Seifert fibered 3-manifolds, J. Math. Soc. Japan, Volume 56 (2004) no. 4, pp. 1233-1253 | DOI | MR | Zbl
Cité par Sources :