Soit un groupe de Lie compact et connexe, et soit une métrique bi-invariante sur . On démontre que est isolée spectralement dans la classe des métriques invariantes à gauche : plus précisément, il existe un entier positif tel que, dans un voisinage de dans la classe des métriques invariantes à gauche et de volume inférieur ou égal à celui de , la métrique est determinée de manière unique par les premières valeurs propres strictement positives de son Laplacien (sans multiplicités). Si est simple, on peut choisir .
We show that a bi-invariant metric on a compact connected Lie group is spectrally isolated within the class of left-invariant metrics. In fact, we prove that given a bi-invariant metric on there is a positive integer such that, within a neighborhood of in the class of left-invariant metrics of at most the same volume, is uniquely determined by the first distinct non-zero eigenvalues of its Laplacian (ignoring multiplicities). In the case where is simple, can be chosen to be two.
Keywords: Laplacian, eigenvalue spectrum, Lie group, left-invariant metric, bi-invariant metric
Mot clés : opérateur de Laplace, spectre des valeurs propres, groupe de Lie, métrique invariante à gauche, métrique bi-invariante
@article{AIF_2010__60_5_1617_0, author = {Gordon, Carolyn S. and Schueth, Dorothee and Sutton, Craig J.}, title = {Spectral isolation of bi-invariant metrics on compact {Lie} groups}, journal = {Annales de l'Institut Fourier}, pages = {1617--1628}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {60}, number = {5}, year = {2010}, doi = {10.5802/aif.2567}, zbl = {1203.53035}, mrnumber = {2766225}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2567/} }
TY - JOUR AU - Gordon, Carolyn S. AU - Schueth, Dorothee AU - Sutton, Craig J. TI - Spectral isolation of bi-invariant metrics on compact Lie groups JO - Annales de l'Institut Fourier PY - 2010 SP - 1617 EP - 1628 VL - 60 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2567/ DO - 10.5802/aif.2567 LA - en ID - AIF_2010__60_5_1617_0 ER -
%0 Journal Article %A Gordon, Carolyn S. %A Schueth, Dorothee %A Sutton, Craig J. %T Spectral isolation of bi-invariant metrics on compact Lie groups %J Annales de l'Institut Fourier %D 2010 %P 1617-1628 %V 60 %N 5 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2567/ %R 10.5802/aif.2567 %G en %F AIF_2010__60_5_1617_0
Gordon, Carolyn S.; Schueth, Dorothee; Sutton, Craig J. Spectral isolation of bi-invariant metrics on compact Lie groups. Annales de l'Institut Fourier, Tome 60 (2010) no. 5, pp. 1617-1628. doi : 10.5802/aif.2567. http://www.numdam.org/articles/10.5802/aif.2567/
[1] Four-dimensional lattices with the same theta series, Internat. Math. Res. Notices (1992) no. 4, pp. 93-96 | DOI | MR | Zbl
[2] Isospectral deformations of metrics on spheres, Invent. Math., Volume 145 (2001) no. 2, pp. 317-331 | DOI | MR | Zbl
[3] Spectral isolation of naturally reductive metrics on simple Lie groups (Math. Z., to appear)
[4] On the characterization of flat metrics by the spectrum, Comment. Math. Helv., Volume 55 (1980) no. 3, pp. 427-444 | DOI | MR | Zbl
[5] Length and eigenvalue equivalence, Int. Math. Res. Not. IMRN (2007) no. 24, pp. 24 (Art. ID rnm135, 24 pp.) | MR | Zbl
[6] Selberg’s trace formula as applied to a compact Riemann surface, Comm. Pure Appl. Math., Volume 25 (1972), pp. 225-246 | DOI | MR
[7] Eigenvalues of the Laplace operator on certain manifolds, Proc. Nat. Acad. Sci. U.S.A., Volume 51 (1964), pp. 542 | DOI | MR | Zbl
[8] Curvature and the fundamental solution of the heat operator, J. Indian Math. Soc., Volume 34 (1970) no. 3-4, p. 269-285 (1971) | MR | Zbl
[9] Isospectral metrics and potentials on classical compact simple Lie groups, Michigan Math. J., Volume 53 (2005) no. 2, pp. 305-318 | DOI | MR | Zbl
[10] Isospectral manifolds with different local geometries, J. Reine Angew. Math., Volume 534 (2001), pp. 41-94 | DOI | MR | Zbl
[11] Isospectral metrics on five-dimensional spheres, J. Differential Geom., Volume 58 (2001) no. 1, pp. 87-111 | MR | Zbl
[12] Locally non-isometric yet super isospectral spaces, Geom. Funct. Anal., Volume 9 (1999) no. 1, pp. 185-214 | DOI | MR | Zbl
[13] Eigenvalues of the Laplacian of Riemannian manifolds, Tǒhoku Math. J. (2), Volume 25 (1973), pp. 391-403 | DOI | MR | Zbl
[14] A characterization of the canonical spheres by the spectrum, Math. Z., Volume 175 (1980) no. 3, pp. 267-274 | DOI | EuDML | MR | Zbl
[15] On the least positive eigenvalue of the Laplacian for compact group manifolds, J. Math. Soc. Japan, Volume 31 (1979) no. 1, pp. 209-226 | DOI | MR | Zbl
[16] The eigenvalue spectrum as moduli for flat tori, Trans. Amer. Math. Soc., Volume 244 (1978), pp. 313-321 | DOI | MR | Zbl
Cité par Sources :