Soit une fonction psh sur un ouvert pseudo-convexe borné et soit les faisceaux d’idéaux multiplicateurs associés, . Motivé par des considérations de géométrie globale, nous donnons une version effective de la propriété de cohérence de lorsque . Étant donné , nous estimons la croissance asymptotique en du nombre de générateurs du -module , ainsi que la croissance des coefficients des sections de par rapport à un nombre fini de générateurs globalement définis sur . Notre approche consiste à démontrer des estimations intégrales asymptotiques pour des noyaux de Bergman associés à des poids singuliers. Ces estimations généralisent au cas singulier des estimations obtenues antérieurement par Lindholm et Berndtsson pour des noyaux de Bergman à poids lisses et présentent un intérêt propre. Nous donnons également des estimations asymptotiques pour le défaut d’additivité des faisceaux d’idéaux multiplicateurs. Nous montrons que lorsque le taux de décroissance de est presque linéaire si les singularités de sont analytiques.
Let be a psh function on a bounded pseudoconvex open set , and let be the associated multiplier ideal sheaves, . Motivated by global geometric issues, we establish an effective version of the coherence property of as . Namely, given any , we estimate the asymptotic growth rate in of the number of generators of over , as well as the growth of the coefficients of sections in with respect to finitely many generators globally defined on . Our approach relies on proving asymptotic integral estimates for Bergman kernels associated with singular weights. These estimates extend to the singular case previous estimates obtained by Lindholm and Berndtsson for Bergman kernels with smooth weights and are of independent interest. In the final section, we estimate asymptotically the additivity defect of multiplier ideal sheaves. As , the decay rate of is proved to be almost linear if the singularities of are analytic.
Keywords: Bergman kernel, closed positive current, $L^2$ estimates, multiplier ideal sheaf, psh function, singular Hermitian metric, Stein manifold
Mot clés : courant positif fermé, estimations $L^2$, faisceau d’idéaux multiplicateurs, fonction psh, métrique hermitienne singuliére, noyau de Bergman, variété de Stein
@article{AIF_2010__60_5_1561_0, author = {Popovici, Dan}, title = {Effective local finite generation of multiplier ideal sheaves}, journal = {Annales de l'Institut Fourier}, pages = {1561--1594}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {60}, number = {5}, year = {2010}, doi = {10.5802/aif.2565}, zbl = {1210.32007}, mrnumber = {2766223}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2565/} }
TY - JOUR AU - Popovici, Dan TI - Effective local finite generation of multiplier ideal sheaves JO - Annales de l'Institut Fourier PY - 2010 SP - 1561 EP - 1594 VL - 60 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2565/ DO - 10.5802/aif.2565 LA - en ID - AIF_2010__60_5_1561_0 ER -
%0 Journal Article %A Popovici, Dan %T Effective local finite generation of multiplier ideal sheaves %J Annales de l'Institut Fourier %D 2010 %P 1561-1594 %V 60 %N 5 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2565/ %R 10.5802/aif.2565 %G en %F AIF_2010__60_5_1561_0
Popovici, Dan. Effective local finite generation of multiplier ideal sheaves. Annales de l'Institut Fourier, Tome 60 (2010) no. 5, pp. 1561-1594. doi : 10.5802/aif.2565. http://www.numdam.org/articles/10.5802/aif.2565/
[1] Bergman kernels and local holomorphic Morse inequalities, Math. Z., Volume 248 (2004) no. 2, pp. 325-344 | DOI | MR | Zbl
[2] Bergman Kernels Related to Hermitian Line Bundles Over Compact Complex Manifolds, Explorations in complex and Riemannian geometry, 1–17, Contemp. Math., 332, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl
[3] On the Volume of a Line Bundle, Internat. J. of Math., Volume 13 (2002) no. 10, pp. 1043-1063 | DOI | MR | Zbl
[4] Complex Analytic and Algebraic Geometry, http://www-fourier.ujf-grenoble.fr/ demailly/books.html
[5] Champs magnétiques et inégalités de Morse pour la -cohomologie, Ann. Inst. Fourier (Grenoble), Volume 35 (1985), pp. 189-229 | DOI | Numdam | MR | Zbl
[6] Regularization of Closed Positive Currents and Intersection Theory, J. Alg. Geom., Volume 1 (1992), pp. 361-409 | MR | Zbl
[7] A Numerical Criterion for Very Ample Line Bundles, J. Diff. Geom., Volume 37 (1993), pp. 323-374 | MR | Zbl
[8] A Subadditivity Property of Multiplier Ideals, Michigan Math. J., Volume 48 (2000), pp. 137-156 | DOI | MR | Zbl
[9] Valuative Analysis of Planar Plurisubharmonic Functions, Invent. Math., Volume 162 (2005) no. 2, pp. 271-311 | DOI | MR | Zbl
[10] Estimates and Existence Theorems for the Operator, Acta Math., Volume 113 (1965), pp. 89-152 | DOI | MR | Zbl
[11] Sur la définition de l’opérateur de Monge-Ampère, Lecture Notes in Math., Volume 1094, Springer Verlag, 1984, pp. 139-150 | MR
[12] Necessary Density Conditions for Sampling and Interpolation of Certain Entire Functions, Acta Math., Volume 117 (1967), pp. 37-52 | DOI | MR | Zbl
[13] Sampling in Weighted Spaces of Entire Functions in and Estimates of the Bergman Kernel, J. Funct. Anal., Volume 18 (2001) no. 2, pp. 390-426 | DOI | MR | Zbl
[14] Multiplier Ideal Sheaves and Existence of Kälher-Einstein Metrics of Positive Scalar Curvature, Ann. of Math., Volume 132 (1990), pp. 549-596 | DOI | MR | Zbl
[15] Regularisation of Currents with Mass Control and Singular Morse Inequalities, J. Diff. Geom., Volume 80 (2008), pp. 281-326 | MR | Zbl
[16] Extension of Meromorphic Maps into Kähler Manifolds, Ann. of Math. (2), Volume 102 (1975) no. 3, pp. 421-462 | DOI | MR | Zbl
[17] Extension of Twisted Pluricanonical Sections with Plurisubharmonic Weight and Invariance of Semipositively Twisted Plurigenera for Manifolds Not Necessarily of General Type, Complex geometry (Göttingen, 2000), Springer Berlin, 2002, pp. 223-277 | MR | Zbl
[18] Applications des techniques à la théorie des idéaux d’une algèbre de fonctions holomorphes avec poids, Ann. Sci. École Norm. Sup. (4) , Volume 5 (1972), pp. 545-579 | Numdam | MR | Zbl
[19] On a Set of Polarized Kähler Metrics on Algebraic Manifolds, J. Differential Geom., Volume 32 (1990) no. 1, pp. 99-130 | MR | Zbl
[20] Open Problems in Geometry, Proc. Symp. Pure Math., Volume 54, AMS Providence, RI, 1993, pp. 1-28 | MR | Zbl
[21] Szegö Kernels and a Theorem of Tian, Internat. Math. Res. Notices 1998, Volume 6 (1998), pp. 317-331 | DOI | MR | Zbl
Cité par Sources :