The geometric complex for algebraic curves with cone-like singularities and admissible Morse functions
[Un complexe géométrique sur des courbes algébriques complexes à singularités coniques et fonctions de Morse admissibles]
Annales de l'Institut Fourier, Tome 60 (2010) no. 5, pp. 1533-1560.

Dans une note précédente, l’auteur a donné une généralisation de la preuve de Witten des inégalités de Morse pour le cas modèle d’une courbe algébrique complexe singulière et d’une fonction de Morse stratifiée. Le but de cette note est de donner une interprétation géométrique du complexe des formes propres du Laplacien de Witten pour des petites valeurs propres à l’aide d’un sous-complexe approprié du complexe des cellules instables.

In a previous note the author gave a generalisation of Witten’s proof of the Morse inequalities to the model of a complex singular curve X and a stratified Morse function f. In this note a geometric interpretation of the complex of eigenforms of the Witten Laplacian corresponding to small eigenvalues is provided in terms of an appropriate subcomplex of the complex of unstable cells of critical points of f.

DOI : 10.5802/aif.2564
Classification : 58Axx, 58Exx
Keywords: Morse theory, Witten deformation, Cone-like Singularities
Mot clés : théorie de Morse, Déformation de Witten, Singularités coniques
Ludwig, Ursula 1

1 Universität Freiburg Mathematisches Institut Eckerstrasse 1 79104 Freiburg (Allemagne)
@article{AIF_2010__60_5_1533_0,
     author = {Ludwig, Ursula},
     title = {The geometric complex for algebraic curves with cone-like singularities and admissible {Morse} functions},
     journal = {Annales de l'Institut Fourier},
     pages = {1533--1560},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {60},
     number = {5},
     year = {2010},
     doi = {10.5802/aif.2564},
     zbl = {1207.58014},
     mrnumber = {2766222},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2564/}
}
TY  - JOUR
AU  - Ludwig, Ursula
TI  - The geometric complex for algebraic curves with cone-like singularities and admissible Morse functions
JO  - Annales de l'Institut Fourier
PY  - 2010
SP  - 1533
EP  - 1560
VL  - 60
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2564/
DO  - 10.5802/aif.2564
LA  - en
ID  - AIF_2010__60_5_1533_0
ER  - 
%0 Journal Article
%A Ludwig, Ursula
%T The geometric complex for algebraic curves with cone-like singularities and admissible Morse functions
%J Annales de l'Institut Fourier
%D 2010
%P 1533-1560
%V 60
%N 5
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.2564/
%R 10.5802/aif.2564
%G en
%F AIF_2010__60_5_1533_0
Ludwig, Ursula. The geometric complex for algebraic curves with cone-like singularities and admissible Morse functions. Annales de l'Institut Fourier, Tome 60 (2010) no. 5, pp. 1533-1560. doi : 10.5802/aif.2564. http://www.numdam.org/articles/10.5802/aif.2564/

[1] Bismut, J.-M.; Zhang, W. Milnor and Ray-Singer metrics on the equivariant determinant of a flat vector bundle, Geom. Funct. Anal., Volume 4 (1994) no. 2, pp. 136-212 | DOI | MR | Zbl

[2] Bismut, Jean-Michel; Lebeau, Gilles Complex immersions and Quillen metrics., Publ.Math.Inst.Hautes Etud.Sci., Volume 74 (1991), pp. 1-197 | DOI | Numdam | MR | Zbl

[3] Bismut, Jean-Michel; Zhang, Weiping An extension of a theorem by Cheeger and Müller. With an appendix by François Laudenbach., Astérisque. 205. Paris., 1992 | Numdam | MR | Zbl

[4] Brüning, J.; Lesch, M. Hilbert complexes, J. Funct. Anal., Volume 108 (1992) no. 1, pp. 88-132 | DOI | MR | Zbl

[5] Cheeger, Jeff On the Hodge theory of Riemannian pseudomanifolds, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979) (Proc. Sympos. Pure Math., XXXVI), Amer. Math. Soc., Providence, R.I., 1980, pp. 91-146 | MR | Zbl

[6] Goresky, Mark; MacPherson, Robert Intersection homology theory., Topology, Volume 19 (1980), pp. 135-165 | DOI | MR | Zbl

[7] Goresky, Mark; MacPherson, Robert Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 14, Springer-Verlag, Berlin, 1988 | MR | Zbl

[8] Helffer, B.; Sjöstrand, J. Puits multiples en mécanique semi-classique. IV. Étude du complexe de Witten, Comm. Partial Differential Equations, Volume 10 (1985) no. 3, pp. 245-340 | DOI | MR | Zbl

[9] Laudenbach, François Appendix: On the Thom-Smale complex, Astérisque. 205. Paris: Société Mathématique de France, 1992 | Numdam | MR | Zbl

[10] Ludwig, Ursula The Witten complex for spaces of dimension two with cone-like singularities (to be published in Math. Nachrichten)

[11] Ludwig, Ursula The geometric complex for algebraic curves with cone-like singularities and admissible Morse functions., C. R., Math., Acad. Sci. Paris, Volume 347 (2009) no. 13-14, pp. 801-804 | MR | Zbl

[12] Ludwig, Ursula The Witten complex for algebraic curves with cone-like singularities., C. R., Math., Acad. Sci. Paris, Volume 347 (2009) no. 11-12, pp. 651-654 | MR | Zbl

[13] Nagase, Masayoshi Hodge theory of singular algebraic curves., Proc. Am. Math. Soc., Volume 108 (1990) no. 4, pp. 1095-1101 | DOI | MR | Zbl

[14] Palis, Jacob Jr.; de Melo, Welington Geometric theory of dynamical systems, Springer-Verlag, New York, 1982 (An introduction, Translated from the Portuguese by A. K. Manning) | MR | Zbl

[15] Watson, G.N. A treatise on the theory of Bessel functions. 2nd ed., London: Cambridge University Press. VII, 1966 | MR | Zbl

[16] Witten, Edward Supersymmetry and Morse theory, J. Differential Geom., Volume 17 (1982) no. 4, pp. 661-692 | MR | Zbl

Cité par Sources :