Actions of monoidally equivalent compact quantum groups and applications to probabilistic boundaries
[Actions des groupes quantiques compacts à équivalence monoïdale et applications aux frontières de probabilité]
Annales de l'Institut Fourier, Tome 60 (2010) no. 1, pp. 169-216.

La notion de l’équivalence monoïdale pour les groupes quantiques compacts a été introduite récemment par Bichon, De Rijdt et Vaes. Dans cet article, nous montrons  : étant donné deux groupes quantiques compacts à équivalence monoïdale, alors il existe une correspondance bijective entre leurs actions. Cette correspondance s’avère être très utile pour obtenir la relation entre les frontières de Poisson et Martin des deux groupes quantiques compacts à équivalence monoïdale. Finalement, nous appliquons ces résultats au calcul des frontières de Poisson des duals associés aux groupes quantiques d’automorphismes.

The notion of monoidal equivalence for compact quantum groups was recently introduced by Bichon, De Rijdt and Vaes. In this paper we prove that there is a natural bijective correspondence between actions of monoidally equivalent quantum groups on unital C * -algebras or on von Neumann algebras. This correspondence turns out to be very useful to obtain the behavior of Poisson and Martin boundaries under monoidal equivalence of quantum groups. Finally, we apply these results to identify the Poisson boundary for the duals of quantum automorphism groups.

DOI : 10.5802/aif.2520
Classification : 20G42
Keywords: Quantum groups, operator algebras, probability theory
Mot clés : groupes quantiques, algèbres d’opérateurs, théorie de probabilité
De Rijdt, An 1 ; Vander Vennet, Nikolas 2

1 Sint-Michielswarande 60 6T4, 1040 Brussel (Belgium)
2 Celestijnenlaan 200 B 3001 Heverlee (Belgium)
@article{AIF_2010__60_1_169_0,
     author = {De Rijdt, An and Vander Vennet, Nikolas},
     title = {Actions of monoidally equivalent compact quantum groups and applications to probabilistic boundaries},
     journal = {Annales de l'Institut Fourier},
     pages = {169--216},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {60},
     number = {1},
     year = {2010},
     doi = {10.5802/aif.2520},
     mrnumber = {2664313},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2520/}
}
TY  - JOUR
AU  - De Rijdt, An
AU  - Vander Vennet, Nikolas
TI  - Actions of monoidally equivalent compact quantum groups and applications to probabilistic boundaries
JO  - Annales de l'Institut Fourier
PY  - 2010
SP  - 169
EP  - 216
VL  - 60
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2520/
DO  - 10.5802/aif.2520
LA  - en
ID  - AIF_2010__60_1_169_0
ER  - 
%0 Journal Article
%A De Rijdt, An
%A Vander Vennet, Nikolas
%T Actions of monoidally equivalent compact quantum groups and applications to probabilistic boundaries
%J Annales de l'Institut Fourier
%D 2010
%P 169-216
%V 60
%N 1
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.2520/
%R 10.5802/aif.2520
%G en
%F AIF_2010__60_1_169_0
De Rijdt, An; Vander Vennet, Nikolas. Actions of monoidally equivalent compact quantum groups and applications to probabilistic boundaries. Annales de l'Institut Fourier, Tome 60 (2010) no. 1, pp. 169-216. doi : 10.5802/aif.2520. http://www.numdam.org/articles/10.5802/aif.2520/

[1] Banica, Teodor Théorie des représentations du groupe quantique compact libre O(n), C. R. Acad. Sci. Paris Sér. I Math., Volume 322 (1996) no. 3, pp. 241-244 | MR | Zbl

[2] Banica, Teodor Le groupe quantique compact libre U(n), Comm. Math. Phys., Volume 190 (1997) no. 1, pp. 143-172 | DOI | MR | Zbl

[3] Banica, Teodor Representations of compact quantum groups and subfactors, J. Reine Angew. Math., Volume 509 (1999), pp. 167-198 | DOI | MR | Zbl

[4] Banica, Teodor Symmetries of a generic coaction, Math. Ann., Volume 314 (1999) no. 4, pp. 763-780 | DOI | MR | Zbl

[5] Banica, Teodor Subfactors associated to compact Kac algebras, Integral Equations Operator Theory, Volume 39 (2001) no. 1, pp. 1-14 | DOI | MR | Zbl

[6] Banica, Teodor Quantum groups and Fuss-Catalan algebras, Comm. Math. Phys., Volume 226 (2002) no. 1, pp. 221-232 | DOI | MR | Zbl

[7] Bichon, Julien; De Rijdt, An; Vaes, Stefaan Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups, Comm. Math. Phys., Volume 262 (2006) no. 3, pp. 703-728 | DOI | MR | Zbl

[8] Boca, Florin P. Ergodic actions of compact matrix pseudogroups on C * -algebras, Astérisque (1995) no. 232, pp. 93-109 Recent advances in operator algebras (Orléans, 1992) | Numdam | MR | Zbl

[9] De Rijdt, A.; Vennet, N. Vander Actions of monoidally equivalent compact quantum groups (2006) (Preprint)

[10] Effros, Edward G.; Ruan, Zhong-Jin Discrete quantum groups. I. The Haar measure, Internat. J. Math., Volume 5 (1994) no. 5, pp. 681-723 | DOI | MR | Zbl

[11] Effros, Edward G.; Ruan, Zhong-Jin Operator spaces, London Mathematical Society Monographs. New Series, 23, The Clarendon Press Oxford University Press, New York, 2000 | MR | Zbl

[12] Høegh-Krohn, R.; Landstad, M. B.; Størmer, E. Compact ergodic groups of automorphisms, Ann. of Math. (2), Volume 114 (1981) no. 1, pp. 75-86 | DOI | MR | Zbl

[13] Izumi, Masaki Non-commutative Poisson boundaries and compact quantum group actions, Adv. Math., Volume 169 (2002) no. 1, pp. 1-57 | DOI | MR | Zbl

[14] Izumi, Masaki; Neshveyev, Sergey; Tuset, Lars Poisson boundary of the dual of SU q (n), Comm. Math. Phys., Volume 262 (2006) no. 2, pp. 505-531 | DOI | MR | Zbl

[15] Kaimanovich, Vadim A. Boundaries of invariant Markov operators: the identification problem, Ergodic theory of Z d actions (Warwick, 1993–1994) (London Math. Soc. Lecture Note Ser.), Volume 228, Cambridge Univ. Press, Cambridge, 1996, pp. 127-176 | MR | Zbl

[16] Lance, C. Hilbert C * -modules, a toolkit for operator algebraists (1996) (Leeds) | Zbl

[17] Landstad, Magnus B. Simplicity of crossed products from ergodic actions of compact matrix pseudogroups, Astérisque (1995) no. 232, pp. 111-114 Appendix to: “Ergodic actions of compact matrix pseudogroups on * -algebras” [Asterisque No. 232 (1995), 93–109; MR1372527 (97d:46075)] by F. P. Boca, Recent advances in operator algebras (Orléans, 1992) | Numdam | MR | Zbl

[18] Maes, Ann; Van Daele, Alfons Notes on compact quantum groups, Nieuw Arch. Wisk. (4), Volume 16 (1998), pp. 73-112 | MR | Zbl

[19] Neshveyev, Sergey; Tuset, Lars The Martin boundary of a discrete quantum group, J. Reine Angew. Math., Volume 568 (2004), pp. 23-70 | DOI | MR | Zbl

[20] Pinzari, Claudia; Roberts, John E. A duality theorem for ergodic actions of compact quantum groups on C * -algebras, Comm. Math. Phys., Volume 277 (2008) no. 2, pp. 385-421 | DOI | MR | Zbl

[21] Podleś, Piotr Symmetries of quantum spaces. Subgroups and quotient spaces of quantum SU(2) and SO(3) groups, Comm. Math. Phys., Volume 170 (1995) no. 1, pp. 1-20 | DOI | MR | Zbl

[22] Sołtan, Piotr M. Quantum Bohr compactification, Illinois J. Math., Volume 49 (2005) no. 4, p. 1245-1270 (electronic) | MR | Zbl

[23] Tomatsu, Reiji Amenable discrete quantum groups, J. Math. Soc. Japan, Volume 58 (2006) no. 4, pp. 949-964 | DOI | MR | Zbl

[24] Tomatsu, Reiji A characterization of right coideals of quotient type and its application to classification of Poisson boundaries, Comm. Math. Phys., Volume 275 (2007) no. 1, pp. 271-296 | DOI | MR | Zbl

[25] Tomatsu, Reiji Compact quantum ergodic systems, J. Funct. Anal., Volume 254 (2008) no. 1, pp. 1-83 | DOI | MR | Zbl

[26] Vaes, Stefaan The unitary implementation of a locally compact quantum group action, J. Funct. Anal., Volume 180 (2001) no. 2, pp. 426-480 | DOI | MR | Zbl

[27] Vaes, Stefaan Strictly outer actions of groups and quantum groups, J. Reine Angew. Math., Volume 578 (2005), pp. 147-184 | DOI | MR | Zbl

[28] Vaes, Stefaan; Vander Vennet, Nikolas Identification of the Poisson and Martin boundaries of orthogonal discrete quantum groups, J. Inst. Math. Jussieu, Volume 7 (2008) no. 2, pp. 391-412 | DOI | MR | Zbl

[29] Vaes, Stefaan; Vergnioux, Roland The boundary of universal discrete quantum groups, exactness, and factoriality, Duke Math. J., Volume 140 (2007) no. 1, pp. 35-84 | DOI | MR | Zbl

[30] Van Daele, A. Discrete quantum groups, J. Algebra, Volume 180 (1996) no. 2, pp. 431-444 | DOI | MR | Zbl

[31] Van Daele, Alfons; Wang, Shuzhou Universal quantum groups, Internat. J. Math., Volume 7 (1996) no. 2, pp. 255-263 | DOI | MR | Zbl

[32] Wang, Shuzhou Quantum symmetry groups of finite spaces, Comm. Math. Phys., Volume 195 (1998) no. 1, pp. 195-211 | DOI | MR | Zbl

[33] Wassermann, Antony Ergodic actions of compact groups on operator algebras. II. Classification of full multiplicity ergodic actions, Canad. J. Math., Volume 40 (1988) no. 6, pp. 1482-1527 | DOI | MR | Zbl

[34] Wassermann, Antony Ergodic actions of compact groups on operator algebras. III. Classification for SU (2), Invent. Math., Volume 93 (1988) no. 2, pp. 309-354 | DOI | MR | Zbl

[35] Wassermann, Antony Ergodic actions of compact groups on operator algebras. I. General theory, Ann. of Math. (2), Volume 130 (1989) no. 2, pp. 273-319 | DOI | MR | Zbl

[36] Woronowicz, S. L. Compact matrix pseudogroups, Comm. Math. Phys., Volume 111 (1987) no. 4, pp. 613-665 | DOI | MR | Zbl

[37] Woronowicz, S. L. Twisted SU (2) group. An example of a noncommutative differential calculus, Publ. Res. Inst. Math. Sci., Volume 23 (1987) no. 1, pp. 117-181 | DOI | MR | Zbl

[38] Woronowicz, S. L. Tannaka-Kreĭn duality for compact matrix pseudogroups. Twisted SU (N) groups, Invent. Math., Volume 93 (1988) no. 1, pp. 35-76 | DOI | MR | Zbl

[39] Woronowicz, S. L. Compact quantum groups, Symétries quantiques (Les Houches, 1995), North-Holland, Amsterdam, 1998, pp. 845-884 | MR | Zbl

Cité par Sources :