Dans cet article, nous étudions les systèmes Hamiltoniens de potentiels homogènes , de degré . Morales et Ramis avaient donné des conditions nécessaires à l’intégrabilité de ces sytèmes en termes des valeurs propres des matrices de Hessienne , calculées aux points tels que . Le thème principal de ce travail est de montrer que d’autres obstructions à l’intégrabilité apparaissent quand n’est pas diagonalisable. Entre autres, nous prouvons que si possède un bloc de Jordan de taille supérieure à deux, alors le sytème n’est pas intégrable. Pour ce faire, nous avons adapté des idées de Kronecker sur les extensions Abeliennes de corps de nombres, dans le contexte de la théorie de Galois différentielle.
In this paper, we consider the natural complex Hamiltonian systems with homogeneous potential , , of degree . The known results of Morales and Ramis give necessary conditions for the complete integrability of such systems. These conditions are expressed in terms of the eigenvalues of the Hessian matrix calculated at a non-zero point , such that . The main aim of this paper is to show that there are other obstructions for the integrability which appear if the matrix is not diagonalizable. We prove, among other things, that if contains a Jordan block of size greater than two, then the system is not integrable in the Liouville sense. The main ingredient in the proof of this result consists in translating some ideas of Kronecker about Abelian extensions of number fields into the framework of differential Galois theory.
Keywords: Hamiltonian systems, integrability, differential Galois theory
Mot clés : systèmes hamiltoniens, intégrabilité, théorie de Galois différentielle
@article{AIF_2009__59_7_2839_0, author = {Duval, Guillaume and Maciejewski, Andrzej J.}, title = {Jordan obstruction to the integrability of {Hamiltonian} systems with homogeneous potentials}, journal = {Annales de l'Institut Fourier}, pages = {2839--2890}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {59}, number = {7}, year = {2009}, doi = {10.5802/aif.2510}, zbl = {1196.37096}, mrnumber = {2649341}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2510/} }
TY - JOUR AU - Duval, Guillaume AU - Maciejewski, Andrzej J. TI - Jordan obstruction to the integrability of Hamiltonian systems with homogeneous potentials JO - Annales de l'Institut Fourier PY - 2009 SP - 2839 EP - 2890 VL - 59 IS - 7 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2510/ DO - 10.5802/aif.2510 LA - en ID - AIF_2009__59_7_2839_0 ER -
%0 Journal Article %A Duval, Guillaume %A Maciejewski, Andrzej J. %T Jordan obstruction to the integrability of Hamiltonian systems with homogeneous potentials %J Annales de l'Institut Fourier %D 2009 %P 2839-2890 %V 59 %N 7 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2510/ %R 10.5802/aif.2510 %G en %F AIF_2009__59_7_2839_0
Duval, Guillaume; Maciejewski, Andrzej J. Jordan obstruction to the integrability of Hamiltonian systems with homogeneous potentials. Annales de l'Institut Fourier, Tome 59 (2009) no. 7, pp. 2839-2890. doi : 10.5802/aif.2510. http://www.numdam.org/articles/10.5802/aif.2510/
[1] Mathematical methods of classical mechanics, Graduate Texts in Mathematics, 60, Springer-Verlag, New York, second edition, 1989 (Translated from the Russian by K. Vogtmann and A. Weinstein) | MR | Zbl
[2] On the Infinitesimal Geometry of Integrable Systems, Fields Inst. Commun., 7, Mechanics Day (Waterloo, ON, 1992), 1996 (Providence, RI: Amer. Math. Soc., pp. 5–56) | MR | Zbl
[3] Two generator subgroups of and the hypergeometric, Riemann, and Lamé equations, J. Symbolic Comput., Volume 28 (1999) no. 4-5, pp. 521-545 | DOI | MR | Zbl
[4] From Gauss to Painlevé, Aspects of Mathematics, E16, Braunschweig: Friedr. Vieweg & Sohn, 1991 | MR | Zbl
[5] On Riemann’s Equations Which Are Solvable by Quadratures, Funkcial. Ekvac., Volume 12 (1969/1970), pp. 269-281 | MR | Zbl
[6] Algebraic groups and algebraic dependence, Amer. J. Math., Volume 90 (1968), pp. 1151-1164 | DOI | MR | Zbl
[7] An algorithm for solving second order linear homogeneous differential equations, J. Symbolic Comput., Volume 2 (1986) no. 1, pp. 3-43 | DOI | MR | Zbl
[8] Symmetries, Topology and Resonances in Hamiltonian Mechanics, Springer-Verlag, Berlin, 1996 | MR | Zbl
[9] Differential Galois Theory and Non-Integrability of Hamiltonian Systems, Progress in Mathematics, 179, Birkhäuser Verlag, Basel, 1999 | MR | Zbl
[10] A note on the non-integrability of some Hamiltonian systems with a homogeneous potential, Methods Appl. Anal., Volume 8 (2001) no. 1, pp. 113-120 | MR | Zbl
[11] Galoisian obstructions to integrability of Hamiltonian systems. I, Methods Appl. Anal., Volume 8 (2001) no. 1, pp. 33-95 | MR | Zbl
[12] Introduction to the theory of linear differential equations, Dover Publications Inc., New York, 1960 | MR | Zbl
[13] Cours de mathématiques spéciales, Algèbre et applications à la géométrie, 2, Masson, Paris, 1979 | MR | Zbl
[14] Galois Theory of Linear Differential Equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 328, Springer-Verlag, 2003 | MR | Zbl
[15] A criterion for the nonexistence of an additional integral in Hamiltonian systems with a homogeneous potential, Phys. D, Volume 29 (1987) no. 1-2, pp. 128-142 | DOI | MR | Zbl
Cité par Sources :