Soit un corps de fonctions de caractéristique , une -extension (pour un nombre premier ) et une courbe elliptique non-isotrivale. Nous étudions le comportement des -parties des groupes de Selmer pour les sous-extensions de par des variantes du Théorème de contrôle de Mazur. Conséquemment, nous démontrons que la limite des groupes de Selmer est un module finiment co-engendré (parfois de cotorsion) sur l’algèbre d’Iwasawa de .
Let be a function field of characteristic , a -extension (for some prime ) and a non-isotrivial elliptic curve. We study the behaviour of the -parts of the Selmer groups ( any prime) in the subextensions of via appropriate versions of Mazur’s Control Theorem. As a consequence we prove that the limit of the Selmer groups is a cofinitely generated (in some cases cotorsion) module over the Iwasawa algebra of .
Keywords: Selmer groups, elliptic curves, function fields, Iwasawa theory
Mot clés : groupes de Selmer, courbes elliptiques, corps de fonctions, théorie d’Iwasawa
@article{AIF_2009__59_6_2301_0, author = {Bandini, Andrea and Longhi, Ignazio}, title = {Selmer groups for elliptic curves in $\mathbb{Z}_l^d$-extensions of function fields of characteristic $p$}, journal = {Annales de l'Institut Fourier}, pages = {2301--2327}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {59}, number = {6}, year = {2009}, doi = {10.5802/aif.2491}, mrnumber = {2640921}, zbl = {1207.11061}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2491/} }
TY - JOUR AU - Bandini, Andrea AU - Longhi, Ignazio TI - Selmer groups for elliptic curves in $\mathbb{Z}_l^d$-extensions of function fields of characteristic $p$ JO - Annales de l'Institut Fourier PY - 2009 SP - 2301 EP - 2327 VL - 59 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2491/ DO - 10.5802/aif.2491 LA - en ID - AIF_2009__59_6_2301_0 ER -
%0 Journal Article %A Bandini, Andrea %A Longhi, Ignazio %T Selmer groups for elliptic curves in $\mathbb{Z}_l^d$-extensions of function fields of characteristic $p$ %J Annales de l'Institut Fourier %D 2009 %P 2301-2327 %V 59 %N 6 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2491/ %R 10.5802/aif.2491 %G en %F AIF_2009__59_6_2301_0
Bandini, Andrea; Longhi, Ignazio. Selmer groups for elliptic curves in $\mathbb{Z}_l^d$-extensions of function fields of characteristic $p$. Annales de l'Institut Fourier, Tome 59 (2009) no. 6, pp. 2301-2327. doi : 10.5802/aif.2491. http://www.numdam.org/articles/10.5802/aif.2491/
[1] Note on Nakayama’s lemma for compact -modules, Asian J. Math., Volume 1 (1997) no. 2, pp. 224-229 | MR | Zbl
[2] Control theorems for elliptic curves over function fields, Int. J. Number Theory, Volume 5 (2009) no. 2, pp. 229-256 | DOI | MR
[3] Torsion points on elliptic curves over function fields and a theorem of Igusa (to appear on Expo. Math.)
[4] Selmer groups and Mordell-Weil groups of elliptic curves over towers of function fields, Compos. Math., Volume 142 (2006) no. 5, pp. 1215-1230 | DOI | MR | Zbl
[5] Mordell-Weil groups in procyclic extensions of a function field, Duke Math. J., Volume 89 (1997) no. 2, pp. 217-224 | DOI | MR | Zbl
[6] Iwasawa theory for elliptic curves, Arithmetic theory of elliptic curves (Cetraro, 1997) (Lecture Notes in Math.), Volume 1716, Springer, Berlin, 1999, pp. 51-144 | MR | Zbl
[7] Introduction to Iwasawa theory for elliptic curves, Arithmetic algebraic geometry (Park City, UT, 1999) (IAS/Park City Math. Ser.), Volume 9, Amer. Math. Soc., Providence, RI, 2001, pp. 407-464 | MR | Zbl
[8] Revêtements étales et groupe fondamental (SGA 1), Documents Mathématiques (Paris), 3, Société Mathématique de France, Paris, 2003 | MR
[9] Fibre systems of Jacobian varieties. III. Fibre systems of elliptic curves, Amer. J. Math., Volume 81 (1959), pp. 453-476 | DOI | MR | Zbl
[10] Rational points of abelian varieties with values in towers of number fields, Invent. Math., Volume 18 (1972), pp. 183-266 | DOI | MR | Zbl
[11] Étale cohomology, Princeton Mathematical Series, 33, Princeton University Press, Princeton, N.J., 1980 | MR | Zbl
[12] Jacobian varieties, Arithmetic geometry (Storrs, Conn., 1984), Springer, New York, 1986, pp. 167-212 | MR | Zbl
[13] Algebraic number theory, Grundlehren der Mathematischen Wissenschaften, 322, Springer-Verlag, Berlin, 1999 (Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder) | MR | Zbl
[14] Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 323, Springer-Verlag, Berlin, 2000 | MR | Zbl
[15] On the Selmer groups of abelian varieties over function fields of characteristic , Math. Proc. Cambridge Philos. Soc., Volume 146 (2009) no. 1, pp. 23-43 | DOI | MR | Zbl
[16] Proof of an exceptional zero conjecture for elliptic curves over function fields, Math. Z., Volume 254 (2006) no. 3, pp. 461-483 | DOI | MR
[17] Local fields, Graduate Texts in Mathematics, 67, Springer-Verlag, New York, 1979 (Translated from the French by Marvin Jay Greenberg) | MR | Zbl
[18] An explicit algorithm for computing the Picard number of certain algebraic surfaces, Amer. J. Math., Volume 108 (1986) no. 2, pp. 415-432 | DOI | MR | Zbl
[19] On the Mordell-Weil lattices, Comment. Math. Univ. St. Paul., Volume 39 (1990) no. 2, pp. 211-240 | MR | Zbl
[20] The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer-Verlag, New York, 1986 | MR | Zbl
[21] Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151, Springer-Verlag, New York, 1994 | MR | Zbl
[22] The rank of elliptic surfaces in unramified abelian towers, J. Reine Angew. Math., Volume 577 (2004), pp. 153-169 | DOI | MR | Zbl
[23] On the Iwasawa Main Conjecture of abelian varieties over function fields of characteristic (in progress)
[24] Elliptic curves with large rank over function fields, Ann. of Math. (2), Volume 155 (2002) no. 1, pp. 295-315 | DOI | MR | Zbl
[25] Jacobi sums, Fermat Jacobians, and ranks of abelian varieties over towers of function fields, Math. Res. Lett., Volume 14 (2007) no. 3, pp. 453-467 | MR | Zbl
Cité par Sources :