Empilements de cercles et modules combinatoires
Annales de l'Institut Fourier, Tome 59 (2009) no. 6, pp. 2175-2222.

Le but de cette note est de tenter d’expliquer les liens étroits qui unissent la théorie des empilements de cercles et des modules combinatoires et de comparer les approches à la conjecture de J.W. Cannon qui en découlent.

The aim of this article is to explain the deep relationships between circle-packings and combinatorial moduli of curves, and to compare the approaches to Cannon’s conjecture to which they lead.

DOI : 10.5802/aif.2488
Classification : 52C26, 30C62, 30F10, 30F40
Mot clés : empilement de cercles, quasiconforme, module de courbes
Keywords: Circle packings, quasiconformal, modulus of curves
HaÏssinsky, Peter 1

1 Université de Provence LATP/CMI 39, rue Frédéric Joliot-Curie 13453 Marseille Cedex 13 (France)
@article{AIF_2009__59_6_2175_0,
     author = {Ha\"Issinsky, Peter},
     title = {Empilements de cercles  et modules combinatoires},
     journal = {Annales de l'Institut Fourier},
     pages = {2175--2222},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {59},
     number = {6},
     year = {2009},
     doi = {10.5802/aif.2488},
     zbl = {1189.30080},
     mrnumber = {2640918},
     language = {fr},
     url = {http://www.numdam.org/articles/10.5802/aif.2488/}
}
TY  - JOUR
AU  - HaÏssinsky, Peter
TI  - Empilements de cercles  et modules combinatoires
JO  - Annales de l'Institut Fourier
PY  - 2009
SP  - 2175
EP  - 2222
VL  - 59
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2488/
DO  - 10.5802/aif.2488
LA  - fr
ID  - AIF_2009__59_6_2175_0
ER  - 
%0 Journal Article
%A HaÏssinsky, Peter
%T Empilements de cercles  et modules combinatoires
%J Annales de l'Institut Fourier
%D 2009
%P 2175-2222
%V 59
%N 6
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.2488/
%R 10.5802/aif.2488
%G fr
%F AIF_2009__59_6_2175_0
HaÏssinsky, Peter. Empilements de cercles  et modules combinatoires. Annales de l'Institut Fourier, Tome 59 (2009) no. 6, pp. 2175-2222. doi : 10.5802/aif.2488. http://www.numdam.org/articles/10.5802/aif.2488/

[1] Ahlfors, Lars V. Lectures on quasiconformal mappings, Manuscript prepared with the assistance of Clifford J. Earle, Jr. Van Nostrand Mathematical Studies, No. 10, D. Van Nostrand Co., Inc., Toronto, Ont.-New York-London, 1966 | MR | Zbl

[2] Ahlfors, Lars V. Conformal invariants : topics in geometric function theory, McGraw-Hill Book Co., New York, 1973 (McGraw-Hill Series in Higher Mathematics) | MR | Zbl

[3] Bojarski, B. Remarks on Sobolev imbedding inequalities, Complex analysis, Joensuu 1987 (Lecture Notes in Math.), Volume 1351, Springer, Berlin, 1988, pp. 52-68 | MR | Zbl

[4] Bonk, Mario; Kleiner, Bruce Quasisymmetric parametrizations of two-dimensional metric spheres, Invent. Math., Volume 150 (2002) no. 1, pp. 127-183 | DOI | MR | Zbl

[5] Bonk, Mario; Kleiner, Bruce Rigidity for quasi-Möbius group actions, J. Differential Geom., Volume 61 (2002) no. 1, pp. 81-106 | MR | Zbl

[6] Bonk, Mario; Kleiner, Bruce Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary, Geom. Topol., Volume 9 (2005), p. 219-246 (electronic) | DOI | MR | Zbl

[7] Cannon, James W. The theory of negatively curved spaces and groups, Ergodic theory, symbolic dynamics, and hyperbolic spaces (Trieste, 1989) (Oxford Sci. Publ.), Oxford Univ. Press, New York, 1991, pp. 315-369 | MR | Zbl

[8] Cannon, James W. The combinatorial Riemann mapping theorem, Acta Math., Volume 173 (1994) no. 2, pp. 155-234 | DOI | MR | Zbl

[9] Cannon, James W.; Floyd, William J.; Parry, Walter R. Squaring rectangles : the finite Riemann mapping theorem, The mathematical legacy of Wilhelm Magnus : groups, geometry and special functions (Brooklyn, NY, 1992) (Contemp. Math.), Volume 169, Amer. Math. Soc., Providence, RI, 1994, pp. 133-212 | MR | Zbl

[10] Cannon, James W.; Floyd, William J.; Parry, Walter R. Sufficiently rich families of planar rings, Ann. Acad. Sci. Fenn. Math., Volume 24 (1999) no. 2, pp. 265-304 | MR | Zbl

[11] Cannon, James W.; Swenson, Eric L. Recognizing constant curvature discrete groups in dimension 3, Trans. Amer. Math. Soc., Volume 350 (1998) no. 2, pp. 809-849 | DOI | MR | Zbl

[12] Colin de Verdière, Yves Un principe variationnel pour les empilements de cercles, Invent. Math., Volume 104 (1991) no. 3, pp. 655-669 | DOI | MR | Zbl

[13] Gromov, Mikhael Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math., Volume 53 (1981), pp. 53-73 | DOI | Numdam | MR | Zbl

[14] Heinonen, Juha Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001 | MR | Zbl

[15] Heinonen, Juha; Koskela, Pekka Quasiconformal maps in metric spaces with controlled geometry, Acta Math., Volume 181 (1998) no. 1, pp. 1-61 | DOI | MR | Zbl

[16] Keith, Stephen Modulus and the Poincaré inequality on metric measure spaces, Math. Z., Volume 245 (2003) no. 2, pp. 255-292 | DOI | MR | Zbl

[17] Keith, Stephen; Laakso, Tomi Conformal Assouad dimension and modulus, Geom. Funct. Anal., Volume 14 (2004) no. 6, pp. 1278-1321 | DOI | MR | Zbl

[18] Koebe, Paul Kontaktprobleme der konformen Abbildung, Ber. Sächs. Akad. Wiss. Leipzig, Math.-phys, Volume 88 (1936), pp. 141-164

[19] Nagata, Jun-iti Modern dimension theory, Bibliotheca Mathematica, Vol. VI. Edited with the cooperation of the “Mathematisch Centrum” and the “Wiskundig Genootschap” at Amsterdam, Interscience Publishers John Wiley & Sons, Inc., New York, 1965 | MR

[20] Pansu, Pierre Dimension conforme et sphère à l’infini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I Math., Volume 14 (1989) no. 2, pp. 177-212 | MR | Zbl

[21] Rodin, Burt; Sullivan, Dennis The convergence of circle packings to the Riemann mapping, J. Differential Geom., Volume 26 (1987) no. 2, pp. 349-360 | MR | Zbl

[22] Schramm, Oded Square tilings with prescribed combinatorics, Israel J. Math., Volume 84 (1993) no. 1-2, pp. 97-118 | DOI | MR | Zbl

[23] Thurston, William P. Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.), Volume 6 (1982) no. 3, pp. 357-381 | DOI | MR | Zbl

[24] Tyson, Jeremy Metric and geometric quasiconformality in Ahlfors regular Loewner spaces, Conform. Geom. Dyn., Volume 5 (2001), p. 21-73 (electronic) | DOI | MR | Zbl

[25] Väisälä, Jussi Quasi-Möbius maps, J. Analyse Math., Volume 44 (1984/85), pp. 218-234 | DOI | MR | Zbl

Cité par Sources :