Soit un corps de fonctions d’une variable sur un corps de caractéristique nulle. Soit un anneau d’holomorphie de , distinct de . Si est récursif, nous démontrons que le dixième problème de Hilbert sur est indécidable. En général, il existe dans tels qu’il n’y ait pas d’algorithme décidant si une équation polynomiale à coefficients dans a une solution dans .
Let be a one-variable function field over a field of constants of characteristic 0. Let be a holomorphy subring of , not equal to . We prove the following undecidability results for : if is recursive, then Hilbert’s Tenth Problem is undecidable in . In general, there exist such that there is no algorithm to tell whether a polynomial equation with coefficients in has solutions in .
Keywords: Hilbert’s tenth problem, elliptic curves, Diophantine undecidability
Mot clés : dixième problème de Hilbert, courbes elliptiques, indécidabilité diophantienne
@article{AIF_2009__59_5_2103_0, author = {Moret-Bailly, Laurent and Shlapentokh, Alexandra}, title = {Diophantine {Undecidability} of {Holomorphy} {Rings} of {Function} {Fields} of {Characteristic~0}}, journal = {Annales de l'Institut Fourier}, pages = {2103--2118}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {59}, number = {5}, year = {2009}, doi = {10.5802/aif.2484}, mrnumber = {2573198}, zbl = {1226.11131}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2484/} }
TY - JOUR AU - Moret-Bailly, Laurent AU - Shlapentokh, Alexandra TI - Diophantine Undecidability of Holomorphy Rings of Function Fields of Characteristic 0 JO - Annales de l'Institut Fourier PY - 2009 SP - 2103 EP - 2118 VL - 59 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2484/ DO - 10.5802/aif.2484 LA - en ID - AIF_2009__59_5_2103_0 ER -
%0 Journal Article %A Moret-Bailly, Laurent %A Shlapentokh, Alexandra %T Diophantine Undecidability of Holomorphy Rings of Function Fields of Characteristic 0 %J Annales de l'Institut Fourier %D 2009 %P 2103-2118 %V 59 %N 5 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2484/ %R 10.5802/aif.2484 %G en %F AIF_2009__59_5_2103_0
Moret-Bailly, Laurent; Shlapentokh, Alexandra. Diophantine Undecidability of Holomorphy Rings of Function Fields of Characteristic 0. Annales de l'Institut Fourier, Tome 59 (2009) no. 5, pp. 2103-2118. doi : 10.5802/aif.2484. http://www.numdam.org/articles/10.5802/aif.2484/
[1] Double fibres and double covers: Paucity of rational points, Acta Arithmetica, Volume 79 (1997), pp. 113-135 | MR | Zbl
[2] Division-ample sets and diophantine problem for rings of integers, Journal de Théorie des Nombres Bordeaux, Volume 17 (2005), pp. 727-735 | DOI | Numdam | MR | Zbl
[3] Topology of diophantine sets: Remarks on Mazur’s conjectures, In Jan Denef, Leonard Lipshitz, Thanases Pheidas, and Jan Van Geel, editors Hilbert’s Tenth Problem: Relations with Arithmetic and Algebraic Geometry, volume 270 of Contemporary Mathematics, American Mathematical Society, 2000, pp. 253-260 | MR | Zbl
[4] Hilbert’s tenth problem is unsolvable, American Mathematical Monthly, Volume 80 (1973), pp. 233-269 | DOI | MR | Zbl
[5] Hilbert’s tenth problem. Diophantine equations: Positive aspects of a negative solution, Proc. Sympos. Pure Math., Volume 28 (1976), pp. 323- 378 (Amer. Math. Soc.) | MR | Zbl
[6] Hilbert’s tenth problem for quadratic rings, Proc. Amer. Math. Soc., Volume 48 (1975), pp. 214-220 | MR | Zbl
[7] The diophantine problem for polynomial rings and fields of rational functions, Transactions of American Mathematical Society, Volume 242 (1978), pp. 391-399 | DOI | MR | Zbl
[8] The diophantine problem for polynomial rings of positive characteristic, Logic Colloquium 78, In M. Boffa, D. van Dalen, and K. MacAloon, editors, North Holland (1979), pp. 131-145 | MR | Zbl
[9] Diophantine sets of algebraic integers, II, Transactions of American Mathematical Society, Volume 257 (1980) no. 1, pp. 227-236 | DOI | MR | Zbl
[10] Diophantine sets over some rings of algebraic integers, Journal of London Mathematical Society, Volume 18 (1978) no. 2, pp. 385-391 | DOI | MR | Zbl
[11] Hilbert’s tenth problem: relations with arithmetic and algebraic geometry, Contemporary Mathematics, 270, American Mathematical Society, Providence, RI, 2000 (Papers from the workshop held at Ghent University, Ghent, November 2-5, 1999 ) | MR | Zbl
[12] Hilbert’s tenth problem for algebraic function fields of characteristic 2, Pacific J. Math., Volume 210 (2003) no. 2, pp. 261-281 | DOI | Zbl
[13] Hilbert’s tenth problem for function fields of varieties over , Int. Math. Res. Not. (2004) no. 59, pp. 3191-3205 | DOI | MR | Zbl
[14] Hilbert’s Tenth Problem for function fields of varieties over number fields and p-adic fields, Journal of Algebra, Volume 310 (2007), pp. 775-792 | DOI | MR | Zbl
[15] Field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 11, Springer Verlag, Berlin, second edition, 2005 | MR | Zbl
[16] Diophantine undecidability of , Journal of Algebra, Volume 150 (1992) no. 1, pp. 35-44 | DOI | MR | Zbl
[17] Diophantine unsolvability over p-adic function fields, Journal of Algebra, Volume 176 (1995), pp. 83-110 | DOI | MR | Zbl
[18] Defining transcendentals in function fields, J. Symbolic Logic, Volume 67 (2002) no. 3, pp. 947-956 | DOI | MR | Zbl
[19] Algebraic Number Theory, Addison Wesley, Reading, MA, 1970 | MR | Zbl
[20] Hilbert’s Tenth Problem, The MIT Press, Cambridge, Massachusetts, 1993 | MR | Zbl
[21] The topology of rational points, Experimental Mathematics, Volume 1 (1992) no. 1, pp. 35-45 | MR | Zbl
[22] Questions of decidability and undecidability in number theory, Journal of Symbolic Logic, Volume 59 (1994) no. 2, pp. 353-371 | DOI | MR | Zbl
[23] Speculation about the topology of rational points: An up-date, Asterisque, Volume 228 (1995), pp. 165-181 | Numdam | MR | Zbl
[24] Open problems regarding rational points on curves and varieties, Galois Representations in Arithmetic Algebraic Geometry, Cambridge University Press, 1998 | MR | Zbl
[25] Elliptic curves and Hilbert’s Tenth Problem for algebraic function fields over real and -adic fields, Journal für die reine und angewandte Mathematik, Volume 587 (2006), pp. 77-143 | MR | Zbl
[26] Hilbert’s tenth problem for a class of rings of algebraic integers, Proceedings of American Mathematical Society, Volume 104 (1988) no. 2, pp. 611-620 | MR | Zbl
[27] Hilbert’s tenth problem for fields of rational functions over finite fields, Inventiones Mathematicae, Volume 103 (1991), pp. 1-8 | DOI | MR | Zbl
[28] Endomorphisms of elliptic curves and undecidability in function fields of positive characteristic, J. Algebra, Volume 273 (2004) no. 1, pp. 395-411 | DOI | MR | Zbl
[29] Hilbert’s Tenth Problem and Mazur’s conjecture for large subrings of , Journal of AMS, Volume 16 (2003) no. 4, pp. 981-990 | MR | Zbl
[30] Diophantine definability of infinite discrete non-archimedean sets and diophantine models for large subrings of number fields, Journal für die Reine und Angewandte Mathematik (2005), pp. 27-48 | DOI | MR | Zbl
[31] Elementary equivalence versus isomorphism, Invent. Math., Volume 150 (2002) no. 2, pp. 385-408 | DOI | MR | Zbl
[32] Diophantine relations between algebraic number fields, Communications on Pure and Applied Mathematics, Volume XLII (1989), pp. 1113-1122 | DOI | MR | Zbl
[33] Extension of Hilbert’s tenth problem to some algebraic number fields, Communications on Pure and Applied Mathematics, Volume XLII (1989), pp. 939-962 | DOI | MR | Zbl
[34] Hilbert’s tenth problem for rings of algebraic functions of characteristic , J. Number Theory, Volume 40 (1992) no. 2, pp. 218-236 | DOI | MR | Zbl
[35] Diophantine classes of holomorphy rings of global fields, Journal of Algebra, Volume 169 (1994) no. 1, pp. 39-175 | DOI | MR | Zbl
[36] Diophantine undecidability for some holomorphy rings of algebraic functions of characteristic 0, Communications in Algebra, Volume 22 (1994) no. 11, pp. 4379-4404 | DOI | MR | Zbl
[37] Diophantine undecidability in some rings of algebraic numbers of totally real infinite extensions of , Annals of Pure and Applied Logic, Volume 68 (1994), pp. 299-325 | DOI | MR | Zbl
[38] Diophantine undecidability of algebraic function fields over finite fields of constants, Journal of Number Theory, Volume 58 (1996) no. 2, pp. 317-342 | DOI | MR | Zbl
[39] Diophantine definability over some rings of algebraic numbers with infinite number of primes allowed in the denominator, Inventiones Mathematicae, Volume 129 (1997), pp. 489-507 | DOI | MR | Zbl
[40] Diophantine undecidability of function fields of characteristic greater than 2 finitely generated over a field algebraic over a finite field, Compositio Mathematica, Volume 132 (2002) no. 1, pp. 99-120 | DOI | MR | Zbl
[41] On diophantine decidability and definability in some rings of algebraic functions of characteristic 0, Journal of Symbolic Logic, Volume 67 (2002) no. 2, pp. 759-786 | DOI | MR | Zbl
[42] On diophantine definability and decidability in large subrings of totally real number fields and their totally complex extensions of degree 2, Journal of Number Theory, Volume 95 (2002), pp. 227-252 | MR | Zbl
[43] A ring version of Mazur’s conjecture on topology of rational points, International Mathematics Research Notices, Volume 7 (2003), pp. 411-423 | DOI | MR | Zbl
[44] On diophantine definability and decidability in some infinite totally real extensions of , Transactions of AMS, Volume 356 (2004) no. 8, pp. 3189-3207 | DOI | MR | Zbl
[45] First-order definitions of rational functions and -integers over holomorphy rings of algebraic functions of characteristic 0, Ann. Pure Appl. Logic, Volume 136 (2005) no. 3, pp. 267-283 | DOI | MR | Zbl
[46] Hilbert’s Tenth Problem: Diophantine Classes and Extensions to Global Fields, Cambridge University Press, 2006 | MR
[47] Diophantine undecidability for some function fields of infinite transcendence degree and positive characteristic, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), Volume 304 (2003) no. Teor. Slozhn. Vychisl. 8, p. 141-167, 171 | MR | Zbl
[48] Hilbert’s tenth problem for rational function fields in characteristic 2, Proceedings of the American Mathematical Society, Volume 120 (1994) no. 1, pp. 249-253 | MR | Zbl
[49] The existential theory of real hyperelliptic fields, Journal of Algebra, Volume 233 (2000) no. 1, pp. 65-86 | MR | Zbl
[50] Hilbert’s tenth problem for rings of rational functions, Notre Dame Journal of Formal Logic, Volume 43 (2003), pp. 181-192 | DOI | MR | Zbl
Cité par Sources :