Soit une algèbre de Lie classique, i.e., , , ou , et soit un élément nilpotent de . Nous étudions dans cet article diverses propriétés du centralisateur de . Les quatre premières sections concernent des problèmes assez élémentaires portant sur le centre de , la variété commutante de , ou encore les centralisateurs des paires commutantes. La seconde partie aborde des questions liées aux différentes structures de Poisson sur et aux invariants symétriques de .
Let be a classical Lie algebra, i.e., either , , or and let be a nilpotent element of . We study various properties of the centralisers . The first four sections deal with rather elementary questions, like the centre of , commuting varieties associated with , or centralisers of commuting pairs. The second half of the paper addresses problems related to different Poisson structures on and symmetric invariants of .
Keywords: Nilpotent orbits, centralisers, symmetric invariants
Mot clés : orbite nilpotente, centralisateurs, invariants symétriques
@article{AIF_2009__59_3_903_0, author = {Yakimova, Oksana}, title = {Surprising properties of centralisers in classical {Lie} algebras}, journal = {Annales de l'Institut Fourier}, pages = {903--935}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {59}, number = {3}, year = {2009}, doi = {10.5802/aif.2451}, zbl = {1187.17008}, mrnumber = {2543656}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2451/} }
TY - JOUR AU - Yakimova, Oksana TI - Surprising properties of centralisers in classical Lie algebras JO - Annales de l'Institut Fourier PY - 2009 SP - 903 EP - 935 VL - 59 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2451/ DO - 10.5802/aif.2451 LA - en ID - AIF_2009__59_3_903_0 ER -
%0 Journal Article %A Yakimova, Oksana %T Surprising properties of centralisers in classical Lie algebras %J Annales de l'Institut Fourier %D 2009 %P 903-935 %V 59 %N 3 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2451/ %R 10.5802/aif.2451 %G en %F AIF_2009__59_3_903_0
Yakimova, Oksana. Surprising properties of centralisers in classical Lie algebras. Annales de l'Institut Fourier, Tome 59 (2009) no. 3, pp. 903-935. doi : 10.5802/aif.2451. http://www.numdam.org/articles/10.5802/aif.2451/
[1] On the actions of reductive groups with a one-parameter family of spherical orbits, Mat. Sb., Volume 188 (1997) no. 5, pp. 3-20 | MR | Zbl
[2] Elementary invariants for centralisers of nilpotent matrices (arXiv:math.RA/0611024)
[3] Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993 | MR | Zbl
[4] Poisson structures transverse to coadjoint orbits, Bull. Sci. Math., Volume 126 (2002) no. 7, pp. 525-534 | DOI | MR | Zbl
[5] Quantization of Slodowy slices, Int. Math. Res. Not. (2002) no. 5, pp. 243-255 | DOI | MR | Zbl
[6] Principal nilpotent pairs in a semisimple Lie algebra. I, Invent. Math., Volume 140 (2000) no. 3, pp. 511-561 | DOI | MR | Zbl
[7] Computing with nilpotent orbits in simple Lie algebras of exceptional type, LMS J. Comput. Math., Volume 11 (2008), pp. 280-297 | DOI | MR
[8] Nilpotent orbits in representation theory, Lie theory (Progr. Math.), Volume 228, Birkhäuser Boston, Boston, MA, 2004, pp. 1-211 | MR
[9] Some remarks on nilpotent orbits, J. Algebra, Volume 64 (1980) no. 1, pp. 190-213 | DOI | MR | Zbl
[10] Lie group representations on polynomial rings, Amer. J. Math., Volume 85 (1963), pp. 327-404 | DOI | MR | Zbl
[11] Centralizers of irregular elements in reductive algebraic groups, Pacific J. Math., Volume 104 (1983) no. 1, pp. 133-154 | MR | Zbl
[12] Jet schemes of locally complete intersection canonical singularities, Invent. Math., Volume 145 (2001) no. 3, pp. 397-424 (With an appendix by David Eisenbud and Edward Frenkel) | DOI | MR | Zbl
[13] Commuting pairs in the centralizers of -regular matrices, J. Algebra, Volume 214 (1999) no. 1, pp. 174-181 | DOI | MR | Zbl
[14] A degree inequality for Lie algebras with a regular Poisson semi-center (arXiv:0805.1342v1 [math.RT])
[15] On symmetric invariants of centralisers in reductive Lie algebras, J. Algebra, Volume 313 (2007) no. 1, pp. 343-391 | DOI | MR
[16] On the coadjoint representation of -contractions of reductive Lie algebras, Adv. Math., Volume 213 (2007) no. 1, pp. 380-404 | DOI | MR
[17] The argument shift method and maximal commutative subalgebras of Poisson algebras, Math. Res. Lett., Volume 15 (2008) no. 2, pp. 239-249 | MR
[18] Commuting varieties of semisimple Lie algebras and algebraic groups, Compositio Math., Volume 38 (1979) no. 3, pp. 311-327 | Numdam | MR | Zbl
[19] A counterexample to a problem on commuting matrices, Proc. Japan Acad. Ser. A Math. Sci., Volume 59 (1983) no. 9, pp. 425-426 | DOI | MR | Zbl
[20] Basic algebraic geometry. 1, Springer-Verlag, Berlin, 1994 (Varieties in projective space, Translated from the 1988 Russian edition and with notes by Miles Reid) | MR | Zbl
[21] Conjugacy classes in algebraic groups, Lecture Notes in Mathematics, Vol. 366, Springer-Verlag, Berlin, 1974 (Notes by Vinay V. Deodhar) | MR | Zbl
[22] Complete families of commuting functions for coisotropic Hamiltonian actions (arXiv:math.SG/0511498)
[23] The local structure of Poisson manifolds, J. Differential Geom., Volume 18 (1983) no. 3, pp. 523-557 | MR | Zbl
[24] The index of centralizers of elements in classical Lie algebras, Funktsional. Anal. i Prilozhen., Volume 40 (2006) no. 1, p. 52-64, 96 | DOI | MR | Zbl
Cité par Sources :