The spectrum of Schrödinger operators with random δ magnetic fields
[Le spectre des opérateurs de Schrödinger avec un champ magnétique de Dirac aléatoire]
Annales de l'Institut Fourier, Tome 59 (2009) no. 2, pp. 659-689.

On considère les opérateurs de Schrödinger sur 2 avec champ magnétique donné par un champ constant et positif ou nul plus des champs magnétiques aléatoires δ du type d’Anderson ou du type de Poisson-Anderson. On étudie le spectre de ces opérateurs par la méthode des potentiels admissibles par Kirsch-Martinelli. De plus, on démontre que les niveaux inférieurs de Landau sont infiniment dégénérés lorsque le champ constant est suffisamment grand en évaluant l’ordre de croissance, utilisant la théorie de la fonction entière de Levin.

We shall consider the Schrödinger operators on 2 with the magnetic field given by a nonnegative constant field plus random δ magnetic fields of the Anderson type or of the Poisson-Anderson type. We shall investigate the spectrum of these operators by the method of the admissible potentials by Kirsch-Martinelli. Moreover, we shall prove the lower Landau levels are infinitely degenerated eigenvalues when the constant field is sufficiently large, by estimating the growth order of the eigenfunctions using the entire function theory by Levin.

DOI : 10.5802/aif.2445
Classification : 81Q10, 30D15, 47F05, 47N50, 82B44
Keywords: Schrödinger operator, random magnetic field, singular magnetic field, Aharonov-Bohm effect, Landau level, entire function
Mot clés : opérateur de Schrödinger, champ magnétique aléatoire, champ magnétique singulier, effet d’Aharonov-Bohm, niveau Landau, fonction entière
Mine, Takuya 1 ; Nomura, Yuji 2

1 Kyoto Institute of Technology Department of Comprehensive Sciences Matsugasaki Sakyo-ku Kyoto 606-8585 (Japan)
2 Ehime University Department of Computer Science Graduate School of Science and Engineering 3 Bunkyo-cho Matsuyama, Ehime 790-8577 (Japan)
@article{AIF_2009__59_2_659_0,
     author = {Mine, Takuya and Nomura, Yuji},
     title = {The spectrum of {Schr\"odinger} operators with random $\delta $ magnetic fields},
     journal = {Annales de l'Institut Fourier},
     pages = {659--689},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {59},
     number = {2},
     year = {2009},
     doi = {10.5802/aif.2445},
     zbl = {1161.81015},
     mrnumber = {2521433},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2445/}
}
TY  - JOUR
AU  - Mine, Takuya
AU  - Nomura, Yuji
TI  - The spectrum of Schrödinger operators with random $\delta $ magnetic fields
JO  - Annales de l'Institut Fourier
PY  - 2009
SP  - 659
EP  - 689
VL  - 59
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2445/
DO  - 10.5802/aif.2445
LA  - en
ID  - AIF_2009__59_2_659_0
ER  - 
%0 Journal Article
%A Mine, Takuya
%A Nomura, Yuji
%T The spectrum of Schrödinger operators with random $\delta $ magnetic fields
%J Annales de l'Institut Fourier
%D 2009
%P 659-689
%V 59
%N 2
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.2445/
%R 10.5802/aif.2445
%G en
%F AIF_2009__59_2_659_0
Mine, Takuya; Nomura, Yuji. The spectrum of Schrödinger operators with random $\delta $ magnetic fields. Annales de l'Institut Fourier, Tome 59 (2009) no. 2, pp. 659-689. doi : 10.5802/aif.2445. http://www.numdam.org/articles/10.5802/aif.2445/

[1] Aharonov, Y.; Bohm, D. Significance of electromagnetic potentials in the quantum theory, Phys. Rev., Volume 115 (1959), pp. 485-491 | DOI | MR | Zbl

[2] Albeverio, S.; Gesztesy, F.; Høegh-Krohn, R.; Holden, H. Solvable models in quantum mechanics, Springer-Verlag, New York, 1988 | MR | Zbl

[3] Ando, K.; Iwatsuka, A.; Kaminaga, M.; Nakano, F. The spectrum of Schrödinger operators with Poisson type random potential, Ann. Henri Poincaré, Volume 7 (2006), pp. 145-160 | DOI | MR | Zbl

[4] Avishai, Y.; Azbel, M. Ya.; Gredeskul, S. A. Electron in a magnetic field interacting with point impurities, Phys. Rev. B, Volume 48 (1993), pp. 17280-17295 | DOI

[5] Avishai, Y.; Redheffer, R. M. Two dimensional disordered electronic systems in a strong magnetic field, Phys. Rev. B, Volume 47 (1993), pp. 2089-2100 | DOI

[6] Avishai, Y.; Redheffer, R. M.; Band, Y. B. Electron states in a magnetic field and random impurity potential: use of the theory of entire functions, J. Phys. A, Volume 25 (1992), pp. 3883-3889 | DOI | Zbl

[7] Borg, J. L. Private communication (2007)

[8] Borg, J. L.; Pulé, J. V. Lifshits tails for random smooth magnetic vortices, J. Math. Phys., Volume 45 (2004), pp. 4493-4505 | DOI | MR | Zbl

[9] Chistyakov, G.; Lyubarskii, Y.; Pastur, L. On completeness of random exponentials in the Bargmann-Fock space, J. Math. Phys., Volume 42 (2001), pp. 3754-3768 | DOI | MR | Zbl

[10] Desbois, J.; Furtlehner, C.; Ouvry, S. Random magnetic impurities and the Landau problem, Nuclear Physics B, Volume 453 (1995), pp. 759-776 | DOI

[11] Desbois, J.; Furtlehner, C.; Ouvry, S. Density correlations of magnetic impurities and disorder, J. Phys. A: Math. Gen., Volume 30 (1997), pp. 7291-7300 | DOI | Zbl

[12] Desbois, J.; Ouvry, S.; Texier, C. Hall conductivity for two-dimensional magnetic systems, Nuclear Physics B, Volume 500 (1997), pp. 486-510 | DOI | MR | Zbl

[13] Dinaburg, E. I.; Sinai, Y. G.; Soshnikov, A. B. Splitting of the low Landau levels into a set of positive Lebesgue measure under small periodic perturbations, Comm. Math. Phys., Volume 189 (1997), pp. 559-575 | DOI | MR | Zbl

[14] Dorlas, T. C.; Macris, N.; Pulé, J. V. Characterization of the spectrum of the Landau Hamiltonian with delta impurities, Comm. Math. Phys., Volume 204 (1999), pp. 367-396 | DOI | MR | Zbl

[15] Exner, P.; Šťovíček, P.; Vytřas, P. Generalized boundary conditions for the Aharonov-Bohm effect combined with a homogeneous magnetic field, J. Math. Phys., Volume 43 (2002), pp. 2151-2168 | DOI | MR | Zbl

[16] Geĭler, V. A. The two-dimensional Schrödinger operator with a homogeneous magnetic field and its perturbations by periodic zero-range potentials, St. Petersburg Math. J., Volume 3 (1992), pp. 489-532 | MR

[17] Geim, A. K.; Bending, S. J.; Grigorieva, I. V. Asymmetric scattering and diffraction of two-dimensional electrons at quantized tubes of magnetic flux, Phys. Rev. Lett., Volume 69 (1992), pp. 2252-2255 | DOI

[18] Geim, A. K.; Bending, S. J.; Grigorieva, I. V.; Blamire, M. G. Ballistic two-dimensional electrons in a random magnetic field, Phys. Rev. B, Volume 49 (1994), pp. 5749-5752 | DOI

[19] Geyler, V. A.; Grishanov, E  N. Zero Modes in a Periodic System of Aharonov-Bohm Solenoids, JETP Letters, Volume 75 (2002), pp. 354-356 | DOI

[20] Geyler, V. A.; Šťovíček, P. Zero modes in a system of Aharonov-Bohm fluxes, Rev. Math. Phys., Volume 16 (2004), pp. 851-907 | DOI | MR | Zbl

[21] Ito, H. T.; Tamura, H. Aharonov-Bohm effect in scattering by point-like magnetic fields at large separation, Ann. Henri Poincaré, Volume 2 (2001), pp. 309-359 | DOI | MR | Zbl

[22] Kirsch, W. Random Schrödinger operators. A course, in Schrödinger operators, (Sønderborg, 1988), p.264–370, Lecture Notes in Phys., 345, Springer, Berlin, 1989 | MR | Zbl

[23] Kirsch, W.; Martinelli, F. On the spectrum of Schrödinger operators with a random potential, Comm. Math. Phys., Volume 85 (1982), pp. 329-350 | DOI | MR | Zbl

[24] Laptev, A.; Weidl, T. Hardy inequalities for magnetic Dirichlet forms, in Mathematical results in quantum mechanics (Prague, 1998), Oper. Theory Adv. Appl., Volume 108 (1999), pp. 299-305 | MR | Zbl

[25] Levin, B. Ja. Distribution of zeros of entire functions, American Mathematical Society, 1964 | MR | Zbl

[26] Melgaard, M.; Ouhabaz, E.-M.; Rozenblum, G. Negative discrete spectrum of perturbed multivortex Aharonov-Bohm Hamiltonians, Ann. Henri Poincaré, Volume 5 (2004), pp. 979-1012 Errata, ibid., 6 (2005), 397–398 | DOI | MR | Zbl

[27] Mine, T. The Aharonov-Bohm solenoids in a constant magnetic field, Ann. Henri Poincaré, Volume 6 (2005), pp. 125-154 | DOI | MR | Zbl

[28] Mine, T.; Nomura, Y. Periodic Aharonov-Bohm Solenoids in a Constant Magnetic Field, Rev. Math. Phys., Volume 18 (2006), pp. 913-934 | DOI | MR | Zbl

[29] Nambu, Y. The Aharonov-Bohm problem revisited, Nuclear Phys. B, Volume 579 (2000), pp. 590-616 | DOI | MR | Zbl

[30] Reed, M.; Simon, B. Methods of modern mathematical physics. I. Functional analysis. Second edition, Academic Press, 1980 | MR | Zbl

[31] Reiss, R.-D. A course on point processes, Springer-Verlag, New York, 1993 | MR | Zbl

[32] Rozenblum, G.; Shirokov, N. Infiniteness of zero modes for the Pauli operator with singular magnetic field, J. Funct. Anal., Volume 233 (2006), pp. 135-172 | DOI | MR | Zbl

[33] Ruijsenaars, S. N. M. The Aharonov-Bohm effect and scattering theory, Ann. Physics, Volume 146 (1983), pp. 1-34 | DOI | MR | Zbl

[34] Zak, J. Group-theoretical consideration of Landau level broadening in crystals, Phys. Rev., Volume 136 (1964), p. A776-A780 | DOI | MR

Cité par Sources :