On étudie la fréquence d’hypercyclicité des opérateurs hypercycliques non faiblement mélangeants. On montre en particulier qu’il est possible de construire sur l’espace des opérateurs non faiblement mélangeants de fréquence d’hypercyclicité arbitrairement grande. On obtient un résultat analogue (mais plus faible) sur ou , . Certains de nos résultats font intervenir des propriétés de lacunarité de type “Sidon” pour les suites d’entiers.
We study the frequency of hypercyclicity of hypercyclic, non–weakly mixing linear operators. In particular, we show that on the space , any sublinear frequency can be realized by a non–weakly mixing operator. A weaker but similar result is obtained for or , . Part of our results is related to some Sidon-type lacunarity properties for sequences of natural numbers.
Keywords: Hypercyclic operators, weak mixing, Sidon sequences
Mot clés : opérateurs hypercycliques, opérateurs faiblement mélangeants, ensembles d’hypercyclicité, suites de Sidon
@article{AIF_2009__59_1_1_0, author = {Bayart, Fr\'ed\'eric and Matheron, \'Etienne}, title = {(Non-)weakly mixing operators and hypercyclicity sets}, journal = {Annales de l'Institut Fourier}, pages = {1--35}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {59}, number = {1}, year = {2009}, doi = {10.5802/aif.2425}, zbl = {1178.47003}, mrnumber = {2514860}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2425/} }
TY - JOUR AU - Bayart, Frédéric AU - Matheron, Étienne TI - (Non-)weakly mixing operators and hypercyclicity sets JO - Annales de l'Institut Fourier PY - 2009 SP - 1 EP - 35 VL - 59 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2425/ DO - 10.5802/aif.2425 LA - en ID - AIF_2009__59_1_1_0 ER -
%0 Journal Article %A Bayart, Frédéric %A Matheron, Étienne %T (Non-)weakly mixing operators and hypercyclicity sets %J Annales de l'Institut Fourier %D 2009 %P 1-35 %V 59 %N 1 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2425/ %R 10.5802/aif.2425 %G en %F AIF_2009__59_1_1_0
Bayart, Frédéric; Matheron, Étienne. (Non-)weakly mixing operators and hypercyclicity sets. Annales de l'Institut Fourier, Tome 59 (2009) no. 1, pp. 1-35. doi : 10.5802/aif.2425. http://www.numdam.org/articles/10.5802/aif.2425/
[1] Hypercyclic and cyclic vectors, J. Funct. Anal., Volume 128 (1995) no. 2, pp. 374-383 | DOI | MR | Zbl
[2] Frequently hypercyclic operators, Trans. Amer. Math. Soc., Volume 358 (2006) no. 11, pp. 5083-5117 | DOI | MR | Zbl
[3] Hypercyclic operators failing the Hypercyclicity Criterion on classical Banach spaces, J. Funct. Anal., Volume 250 (2007), pp. 426-441 | DOI | MR | Zbl
[4] Hereditarily hypercyclic operators, J. Funct. Anal., Volume 167 (1999) no. 1, pp. 94-112 | DOI | MR | Zbl
[5] Frequently hypercyclic operators and vectors, Ergodic Theory Dynam. Systems, Volume 27 (2007), pp. 383-404 | DOI | MR | Zbl
[6] Somewhere dense orbits are everywhere dense, Indiana Univ. Math. J., Volume 52 (2003) no. 3, pp. 811-819 | DOI | MR | Zbl
[7] Topologically mixing hypercyclic operators, Proc. Amer. Math. Soc., Volume 132 (2004) no. 2, pp. 385-389 | DOI | MR | Zbl
[8] A hypercyclic operator whose direct sum is not hypercyclic (Journal of Operator Theory, to appear)
[9] Recurrence in ergodic theory and combinatorial number theory, Princeton University Press, 1981 | MR | Zbl
[10] Ergodic theory via joinings, Mathematical Surveys and Monographs, 101, American Mathematical Society, 2003 | MR | Zbl
[11] On the interplay between mesurable and topological dynamics, Handbook of dynamical systems, 1B, Elsevier B. V., 2006 (597–648) | MR | Zbl
[12] Hypercyclic operators, mixing operators, and the bounded steps problem, J. Operator Theory, Volume 54 (2005) no. 1, pp. 147-168 | MR | Zbl
[13] Frequently dense orbits, C. R. Acad. Sci. Paris, Volume 341 (2005), pp. 123-128 | MR | Zbl
[14] Sequences, Springer-Verlag, 1983 | MR | Zbl
[15] Syndetically hypercyclic operators, Integral Equations Operator Theory, Volume 51 (2005) no. 2, pp. 275-281 | DOI | MR | Zbl
[16] An infinite Sidon sequence, J. Number Theory, Volume 68 (1998), pp. 63-71 | DOI | MR | Zbl
Cité par Sources :