A mean value theorem for the square of class number times regulator of quadratic extensions
[Un théorème de la moyenne pour le carré du nombre de classe multiplié par le régulateur d’extensions quadratiques]
Annales de l'Institut Fourier, Tome 58 (2008) no. 2, pp. 625-670.

Soit k un corps de nombres. Dans cet article, nous donnons une formule pour la valeur moyenne du carré du nombre de classe multiplié par le régulateur pour certaines familles d’extensions quadratiques de k caractérisées par un nombre fini de conditions locales. Notre approche utilise la théorie de la fonction zêta associée à l’espace de paires d’algèbres de quaternions. Nous prouvons aussi une formule asymptotique pour le coefficient de corrélation du nombre de classe multiplié par le régulateur de certaines familles d’extensions quadratiques.

Let k be a number field. In this paper, we give a formula for the mean value of the square of class number times regulator for certain families of quadratic extensions of k characterized by finitely many local conditions. We approach this by using the theory of the zeta function associated with the space of pairs of quaternion algebras. We also prove an asymptotic formula of the correlation coefficient for class number times regulator of certain families of quadratic extensions.

DOI : 10.5802/aif.2363
Classification : 11M41
Keywords: Density theorem, prehomogeneous vector space, quaternion algebra, local zeta function
Mot clés : théorème densité, espace vectoriel préhomogène, fonction zêta local, algèbres de quaternions
Taniguchi, Takashi 1

1 University of Tokyo Graduate School of Mathematical Sciences 3–8–1 Komaba Meguro-Ku Tokyo 153-0041 (Japan)
@article{AIF_2008__58_2_625_0,
     author = {Taniguchi, Takashi},
     title = {A mean value theorem for the square of class number times regulator of quadratic extensions},
     journal = {Annales de l'Institut Fourier},
     pages = {625--670},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {58},
     number = {2},
     year = {2008},
     doi = {10.5802/aif.2363},
     mrnumber = {2410385},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2363/}
}
TY  - JOUR
AU  - Taniguchi, Takashi
TI  - A mean value theorem for the square of class number times regulator of quadratic extensions
JO  - Annales de l'Institut Fourier
PY  - 2008
SP  - 625
EP  - 670
VL  - 58
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2363/
DO  - 10.5802/aif.2363
LA  - en
ID  - AIF_2008__58_2_625_0
ER  - 
%0 Journal Article
%A Taniguchi, Takashi
%T A mean value theorem for the square of class number times regulator of quadratic extensions
%J Annales de l'Institut Fourier
%D 2008
%P 625-670
%V 58
%N 2
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.2363/
%R 10.5802/aif.2363
%G en
%F AIF_2008__58_2_625_0
Taniguchi, Takashi. A mean value theorem for the square of class number times regulator of quadratic extensions. Annales de l'Institut Fourier, Tome 58 (2008) no. 2, pp. 625-670. doi : 10.5802/aif.2363. http://www.numdam.org/articles/10.5802/aif.2363/

[1] Datskovsky, B. A mean value theorem for class numbers of quadratic extensions, Contemporary Mathematics, Volume 143 (1993), pp. 179-242 | MR | Zbl

[2] Datskovsky, B.; Wright, D. J. The adelic zeta function associated with the space of binary cubic forms II: Local theory, J. Reine Angew. Math., Volume 367 (1986), pp. 27-75 | DOI | MR | Zbl

[3] Datskovsky, B.; Wright, D. J. Density of discriminants of cubic extensions, J. Reine Angew. Math., Volume 386 (1988), pp. 116-138 | DOI | MR | Zbl

[4] Granville, A.; Soundararajan, K. The distributions of values of L(1,χ d ), Geom. Funct. Anal., Volume 13 (2003), pp. 992-1028 | DOI | MR | Zbl

[5] Kable, A. C.; Wright, D. J. Uniform distribution of the Steinitz invariants of quadratic and cubic extensions, Compos. Math., Volume 142 (2006), pp. 84-100 | DOI | MR | Zbl

[6] Kable, A. C.; Yukie, A. The mean value of the product of class numbers of paired quadratic fields, I, Tohoku Math. J., Volume 54 (2002), pp. 513-565 | DOI | MR | Zbl

[7] Kable, A. C.; Yukie, A. The mean value of the product of class numbers of paired quadratic fields, II, J. Math. Soc. Japan, Volume 55 (2003), pp. 739-764 | DOI | MR | Zbl

[8] Kable, A. C.; Yukie, A. The mean value of the product of class numbers of paired quadratic fields, III, J. Number Theory, Volume 99 (2003), pp. 185-218 | DOI | MR | Zbl

[9] Mumford, D.; Fogarty, J. Geometric invariant theory, Springer-Verlag, 1982 (Berlin, Heidelberg, New York, 2nd edition) | MR | Zbl

[10] Peter, M. Momente der Klassenzahlen binärer quadratischer Formen mit ganzalgebraischen Koeffizienten, Acta Arithm., Volume 70 (1995), pp. 43-77 | MR | Zbl

[11] Software, Waterloo Maple Maple V, Waterloo Maple Inc., Waterloo, Ontario, 1994

[12] Taniguchi, T. Distributions of discriminants of cubic algebras (Preprint 2006, math.NT/0606109)

[13] Taniguchi, T. Distributions of discriminants of cubic algebras II (Preprint 2006, math.NT/0608658)

[14] Taniguchi, T. On propotional constants of the mean value of class numbers of quadratic extensions, Trans. Amer. Math. Soc., Volume 359 (2007), pp. 5517-5524 | DOI | MR | Zbl

[15] Taniguchi, T. On the zeta functions of prehomogeneous vector spaces for a pair of simple algebras, Ann. Inst. Fourier, Volume 57 (2007), pp. 1331-1358 | DOI | Numdam | MR

[16] Vignéras, M. F. Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, Volume 800, Springer-Verlag, Berlin, Heidelberg, New York, 1980 | MR | Zbl

[17] Weil, A. Basic number theory, Springer-Verlag, 1974 (Berlin, Heidelberg, New York) | Zbl

[18] Wright, D. J.; Yukie, A. Prehomogeneous vector spaces and field extensions, Invent. Math., Volume 110 (1992), pp. 283-314 | DOI | MR | Zbl

Cité par Sources :