Soit une solution à l’infini d’une équation différentielle algébrique d’ordre , . Nous donnons un critère géométrique pour que les germes à l’infini de et de la fonction identité sur appartiennent à un même corps de Hardy. Ce critère repose sur le concept de non oscillation.
Let be a solution of an algebraic differential equation of order , . We establish a geometric criterion so that the germs at infinity of and the identity function on belong to a common Hardy field. This criterion is based on the concept of non oscillation.
Mot clés : oscillation, corps de Hardy, semi-algébrique, pfaffien
Keywords: oscillation, Hardy field, semi-algebraic, pfaffian
@article{AIF_2007__57_6_1825_0, author = {Blais, Fran\c{c}ois and Moussu, Robert and Sanz, Fernando}, title = {Solutions non oscillantes d{\textquoteright}une \'equation diff\'erentielle et corps de {Hardy}}, journal = {Annales de l'Institut Fourier}, pages = {1825--1838}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {57}, number = {6}, year = {2007}, doi = {10.5802/aif.2314}, zbl = {1133.34007}, mrnumber = {2377887}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/aif.2314/} }
TY - JOUR AU - Blais, François AU - Moussu, Robert AU - Sanz, Fernando TI - Solutions non oscillantes d’une équation différentielle et corps de Hardy JO - Annales de l'Institut Fourier PY - 2007 SP - 1825 EP - 1838 VL - 57 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2314/ DO - 10.5802/aif.2314 LA - fr ID - AIF_2007__57_6_1825_0 ER -
%0 Journal Article %A Blais, François %A Moussu, Robert %A Sanz, Fernando %T Solutions non oscillantes d’une équation différentielle et corps de Hardy %J Annales de l'Institut Fourier %D 2007 %P 1825-1838 %V 57 %N 6 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2314/ %R 10.5802/aif.2314 %G fr %F AIF_2007__57_6_1825_0
Blais, François; Moussu, Robert; Sanz, Fernando. Solutions non oscillantes d’une équation différentielle et corps de Hardy. Annales de l'Institut Fourier, Tome 57 (2007) no. 6, pp. 1825-1838. doi : 10.5802/aif.2314. http://www.numdam.org/articles/10.5802/aif.2314/
[1] Chapitres supplémentaires de la théorie des équations différentielles ordinaires, “Mir”, Moscow, 1984 (Translated from the Russian by Djilali Embarek, Reprint of the 1980 edition) | Zbl
[2] Real algebraic and semi-algebraic sets, Actualités Mathématiques. [Current Mathematical Topics], Hermann, Paris, 1990 | MR | Zbl
[3] Géométrie algébrique réelle, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 12, Springer-Verlag, Berlin, 1987 | MR | Zbl
[4] An extension of Hardy’s class of “orders of infinity”, J. Analyse Math., Volume 39 (1981), pp. 235-255 | DOI | Zbl
[5] Second order differential equations over Hardy fields, J. London Math. Soc. (2), Volume 35 (1987) no. 1, pp. 109-120 | DOI | MR | Zbl
[6] Oscillation, spiralement, tourbillonnement, Comment. Math. Helv., Volume 75 (2000) no. 2, pp. 284-318 | DOI | MR | Zbl
[7] Nonoscillating projections for trajectories of vector fields, Journal of Dynamical and Control Systems, Volume 13 (2007) no. 2, pp. 173-176 | DOI | MR | Zbl
[8] Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, 248, Cambridge University Press, Cambridge, 1998 | MR | Zbl
[9] Solving ordinary differential equations in terms of series with real exponents, Trans. Amer. Math. Soc., Volume 327 (1991) no. 1, pp. 329-351 | DOI | MR | Zbl
[10] Properties of logarithmico-exponential functions, Proc. London Math. Soc.,, Volume 10 (1912) no. 2, pp. 54-90 | DOI
[11] Some results concerning the behaviour at infinity of a real and continuous solution of an algebraic differential equation of the first order, Proc. London Math. Soc.,, Volume 10 (1912), pp. 451-469 | DOI
[12] Fewnomials, Translations of Mathematical Monographs, 88, American Mathematical Society, Providence, RI, 1991 (Translated from the Russian by Smilka Zdravkovska) | MR | Zbl
[13] Differential equations over polynomially bounded o-minimal structures, Proc. Amer. Math. Soc., Volume 131 (2003) no. 1, p. 175-183 (electronic) | DOI | MR | Zbl
[14] Théorie de Hovanskiĭ et problème de Dulac, Invent. Math., Volume 105 (1991) no. 2, pp. 431-441 | DOI | MR | Zbl
[15] Trajectories of polynomial vector fields and ascending chains of polynomial ideals, Ann. Inst. Fourier (Grenoble), Volume 49 (1999) no. 2, pp. 563-609 | DOI | Numdam | MR | Zbl
[16] Über Differentialgliechungen erster Ordnung, die nicht nach der Ableitung aufgelöst sind, Jahresbericht der Deutschen Mathematiker-Vereinigung, Volume 22 (1912), pp. 356-368
[17] Hardy fields, J. Math. Anal. Appl., Volume 93 (1983) no. 2, pp. 297-311 | DOI | MR | Zbl
[18] Growth properties of functions in Hardy fields, Trans. Amer. Math. Soc., Volume 299 (1987) no. 1, pp. 261-272 | DOI | MR | Zbl
[19] Asymptotic solutions of , J. Math. Anal. Appl., Volume 189 (1995) no. 3, pp. 640-650 | DOI | MR | Zbl
[20] Erratum : “Growth orders occurring in expansions of Hardy-field solutions of algebraic differential equations” [Ann. Inst. Fourier (Grenoble) 45 (1995), no. 1, 183–221 ; MR1324130 (96f :34073)], Ann. Inst. Fourier (Grenoble), Volume 45 (1995) no. 5, pp. 1471
[21] Équations Fonctionnelles. Applications, Masson et Cie, Paris, 1945 | MR | Zbl
Cité par Sources :