Soit un sous-Laplacien invariant à droite sur un groupe de Lie et soit l’opérateur “sommes sphériques partielles” associé, où dénote la résolution spectrale de Nous prouvons que converge vers p.p. quand si
Let be a right-invariant sub-Laplacian on a connected Lie group and let denote the associated “spherical partial sums,” where is the spectral resolution of We prove that converges a.e. to as under the assumption
Keywords: Rademacher-Menshov theorem, sub-Laplacian, spectral theory
Mot clés : théorème de Rademacher-Menchov, sous-Laplacien, théorie spectrale
@article{AIF_2007__57_5_1509_0, author = {Meaney, Christopher and M\"uller, Detlef and Prestini, Elena}, title = {A.e. convergence of spectral sums on {Lie} groups}, journal = {Annales de l'Institut Fourier}, pages = {1509--1520}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {57}, number = {5}, year = {2007}, doi = {10.5802/aif.2303}, zbl = {1131.22007}, mrnumber = {2364139}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2303/} }
TY - JOUR AU - Meaney, Christopher AU - Müller, Detlef AU - Prestini, Elena TI - A.e. convergence of spectral sums on Lie groups JO - Annales de l'Institut Fourier PY - 2007 SP - 1509 EP - 1520 VL - 57 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2303/ DO - 10.5802/aif.2303 LA - en ID - AIF_2007__57_5_1509_0 ER -
%0 Journal Article %A Meaney, Christopher %A Müller, Detlef %A Prestini, Elena %T A.e. convergence of spectral sums on Lie groups %J Annales de l'Institut Fourier %D 2007 %P 1509-1520 %V 57 %N 5 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2303/ %R 10.5802/aif.2303 %G en %F AIF_2007__57_5_1509_0
Meaney, Christopher; Müller, Detlef; Prestini, Elena. A.e. convergence of spectral sums on Lie groups. Annales de l'Institut Fourier, Tome 57 (2007) no. 5, pp. 1509-1520. doi : 10.5802/aif.2303. http://www.numdam.org/articles/10.5802/aif.2303/
[1] Convergence Problems of Orthogonal Series., International Series of Monographs in Pure and Applied Mathematics, 20, Pergamon Press, Oxford, New York, 1961 (Translated from the German by I. Földer) | MR | Zbl
[2] Almost-Everywhere Convergence of Fourier Integrals for Functions in Sobolev Spaces, and an -Localisation Principle, Rev. Mat. Iberoamericana, Volume 4 (1988) no. 2, pp. 319-337 | MR | Zbl
[3] bounds for spectral multipliers on nilpotent groups., Trans. Amer. Math. Soc., Volume 328 (1991) no. 1, pp. 73-81 | DOI | MR | Zbl
[4] Almost everywhere convergence of inverse Fourier transforms., Proc. Amer. Math. Soc., Volume 134 (2006) no. 6, pp. 1651-1660 | DOI | MR | Zbl
[5] Hardy Spaces on Homogeneous Groups, Mathematical Notes, 28, Princeton University Press, Princeton, N.J., 1982 | MR | Zbl
[6] Almost everywhere summability on nilmanifolds, Trans. Amer. Math. Soc., Volume 278 (1983) no. 2, pp. 703-715 | DOI | MR | Zbl
[7] Sub-Laplacians of holomorphic -type on rank one -groups and related solvable groups, J. Funct. Anal., Volume 170 (2000) no. 2, pp. 366-427 | DOI | MR | Zbl
[8] Analysis and Geometry on Groups, Cambridge Tracts in Mathematics, 100, Cambridge University Press, Cambridge, 1992 | MR | Zbl
[9] Trigonometric Series, 1 and 2, Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2002 (With a foreword by Robert A. Fefferman) | MR | Zbl
Cité par Sources :