Nous proposons une solution au problème de Schottky hyperelliptique. Celle-ci est basée sur l’utilisation de matrices jacobiennes de fonctions thêta et de modèles symétriques pour les courbes hyperelliptiques. Ces ingrédients sont intéressants en eux-mêmes : le premier fournit des matrices de périodes qui peuvent être décrites géométriquement et le second possède de remarquables propriétés arithmétiques.
We propose a solution to the hyperelliptic Schottky problem, based on the use of Jacobian Nullwerte and symmetric models for hyperelliptic curves. Both ingredients are interesting on its own, since the first provide period matrices which can be geometrically described, and the second have remarkable arithmetic properties.
Keywords: Hyperelliptic curves, periods, Jacobian Nullwerte
Mot clés : courbes hyperelliptiques, periods, thetanullwerte
@article{AIF_2007__57_4_1253_0, author = {Gu\`ardia, Jordi}, title = {Jacobian {Nullwerte,} periods and symmetric equations for hyperelliptic curves}, journal = {Annales de l'Institut Fourier}, pages = {1253--1283}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {57}, number = {4}, year = {2007}, doi = {10.5802/aif.2293}, mrnumber = {2339331}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2293/} }
TY - JOUR AU - Guàrdia, Jordi TI - Jacobian Nullwerte, periods and symmetric equations for hyperelliptic curves JO - Annales de l'Institut Fourier PY - 2007 SP - 1253 EP - 1283 VL - 57 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2293/ DO - 10.5802/aif.2293 LA - en ID - AIF_2007__57_4_1253_0 ER -
%0 Journal Article %A Guàrdia, Jordi %T Jacobian Nullwerte, periods and symmetric equations for hyperelliptic curves %J Annales de l'Institut Fourier %D 2007 %P 1253-1283 %V 57 %N 4 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2293/ %R 10.5802/aif.2293 %G en %F AIF_2007__57_4_1253_0
Guàrdia, Jordi. Jacobian Nullwerte, periods and symmetric equations for hyperelliptic curves. Annales de l'Institut Fourier, Tome 57 (2007) no. 4, pp. 1253-1283. doi : 10.5802/aif.2293. http://www.numdam.org/articles/10.5802/aif.2293/
[1] Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 267, Springer-Verlag, New York, 1985 | MR | Zbl
[2] Hyperbolic uniformization of the Fermat curves, Ramanjujan J., Volume 12 (2006), pp. 207-223 | DOI | MR | Zbl
[3] Modular functions of one variable. IV, Springer-Verlag, Berlin, 1975 (Lecture Notes in Mathematics, Vol. 476) | MR
[4] Field of moduli and field of definition for curves of genus 2, Computational aspects of algebraic curves (Lecture Notes Ser. Comput.), Volume 13, World Sci. Publ., Hackensack, NJ, 2005, pp. 71-83 | MR | Zbl
[5] Algorithms for modular elliptic curves, Cambridge University Press, Cambridge, 1992 | MR | Zbl
[6] Über die constanten Factoren der Thetareihen, J. reine angew. Math., Volume 98 (1885), pp. 241-260
[7] Abelian surfaces of -type as Jacobians of curves, Acta Arith., Volume 116 (2005) no. 3, pp. 263-287 | DOI | MR | Zbl
[8] Modular curves of genus 2, Math. Comp., Volume 72 (2003) no. 241, p. 397-418 (electronic) | DOI | MR | Zbl
[9] Computations on modular Jacobian surfaces, Algorithmic number theory (Sydney, 2002) (Lecture Notes in Comput. Sci.), Volume 2369, Springer, Berlin, 2002, pp. 189-197 | MR | Zbl
[10] Jacobian nullwerte and algebraic equations, J. Algebra, Volume 253 (2002) no. 1, pp. 112-132 | DOI | MR | Zbl
[11] Jacobi Thetanullwerte, periods of elliptic curves and minimal equations, Math. Res. Lett., Volume 11 (2004) no. 1, pp. 115-123 | MR | Zbl
[12] Stable models of elliptic curves, ring class fields, and complex multiplication, Algorithmic number theory (Lecture Notes in Comput. Sci.), Volume 3076, Springer, Berlin, 2004, pp. 250-262 | MR | Zbl
[13] On Jacobi’s derivative formula and its generalizations, Amer. J. Math., Volume 102 (1980) no. 2, pp. 409-446 | DOI | Zbl
[14] On the nullwerte of Jacobians of odd theta functions, Symposia Mathematica, Vol. XXIV (Sympos., INDAM, Rome, 1979), Academic Press, London, 1981, pp. 83-95 | MR
[15] Problems on abelian functions at the time of Poincaré and some at present, Bull. Amer. Math. Soc. (N.S.), Volume 6 (1982) no. 2, pp. 161-174 | DOI | MR | Zbl
[16] Multiplicity one theorem and problems related to Jacobi’s formula, Amer. J. Math., Volume 105 (1983) no. 1, pp. 157-187 | DOI | Zbl
[17] On the discriminant of a hyperelliptic curve, Trans. Amer. Math. Soc., Volume 342 (1994) no. 2, pp. 729-752 | DOI | MR | Zbl
[18] http://magma.math.usyd.edu.au/magma/ (2004) (University of Sydney)
[19] Elliptic curves, Cambridge University Press, Cambridge, 1997 (Function theory, geometry, arithmetic) | MR | Zbl
[20] Construction de courbes de genre à partir de leurs modules, Effective methods in algebraic geometry (Castiglioncello, 1990) (Progr. Math.), Volume 94, Birkhäuser Boston, Boston, MA, 1991, pp. 313-334 | MR | Zbl
[21] Tata lectures on theta. II, Progress in Mathematics, 43, Birkhäuser Boston Inc., Boston, MA, 1984 (Jacobian theta functions and differential equations, With the collaboration of C. Musili, M. Nori, E. Previato, M. Stillman and H. Umemura) | MR | Zbl
[22] Mémoire sur les fonctions de deux variables et à quatre périodes qui sont les inverses des intégrales ultra-elliptiques de la première classe, Mémoires des savants étrangers, Volume XI (1851), pp. 362-468
[23] Abelian varieties with complex multiplication and modular functions, Princeton Mathematical Series, 46, Princeton University Press, Princeton, NJ, 1998 | MR | Zbl
[24] The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer-Verlag, New York, 1992 (Corrected reprint of the 1986 original) | MR | Zbl
[25] A generalization of Rosenhain’s normal form for hyperelliptic curves with an application, Proc. Japan Acad. Ser. A Math. Sci., Volume 72 (1996) no. 7, pp. 162-165 | DOI | Zbl
[26] Beitrag zur Bestimmung von durch die Klassenmoduln algebraischer Funktionen, J. reine angew. Math., Volume 71 (1870), pp. 201-222 | DOI
[27] Examples of genus two CM curves defined over the rationals, Math. Comp., Volume 68 (1999) no. 225, pp. 307-320 | DOI | MR | Zbl
[28] -dimensional simple factors of , Manuscripta Math., Volume 87 (1995) no. 2, pp. 179-197 | DOI | MR | Zbl
[29] Hyperelliptic simple factors of with dimension at least , Experiment. Math., Volume 6 (1997) no. 4, pp. 273-287 | MR | Zbl
[30] Sur les périodes des intégrales abéliennes, Comm. Pure Appl. Math., Volume 29 (1976) no. 6, pp. 813-819 | DOI | MR | Zbl
[31] A class of hyperelliptic CM-curves of genus three, J. Ramanujan Math. Soc., Volume 16 (2001) no. 4, pp. 339-372 | MR | Zbl
Cité par Sources :