Une métrique riemannienne holomorphe sur une variété complexe
A holomorphic Riemannian metric on a compact complex manifold
Mot clés : variétés complexes, métriques riemanniennes holomorphes, structures rigides, pseudo-groupe d’isométries locales
Keywords: complex manifolds, holomorphic riemannian metrics, rigid structures, pseudogroup of local isometries
@article{AIF_2007__57_3_739_0, author = {Dumitrescu, Sorin}, title = {Homog\'en\'eit\'e locale pour les m\'etriques riemanniennes holomorphes en dimension $3$}, journal = {Annales de l'Institut Fourier}, pages = {739--773}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {57}, number = {3}, year = {2007}, doi = {10.5802/aif.2275}, zbl = {1128.53045}, mrnumber = {2336828}, language = {fr}, url = {https://www.numdam.org/articles/10.5802/aif.2275/} }
TY - JOUR AU - Dumitrescu, Sorin TI - Homogénéité locale pour les métriques riemanniennes holomorphes en dimension $3$ JO - Annales de l'Institut Fourier PY - 2007 SP - 739 EP - 773 VL - 57 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2275/ DO - 10.5802/aif.2275 LA - fr ID - AIF_2007__57_3_739_0 ER -
%0 Journal Article %A Dumitrescu, Sorin %T Homogénéité locale pour les métriques riemanniennes holomorphes en dimension $3$ %J Annales de l'Institut Fourier %D 2007 %P 739-773 %V 57 %N 3 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2275/ %R 10.5802/aif.2275 %G fr %F AIF_2007__57_3_739_0
Dumitrescu, Sorin. Homogénéité locale pour les métriques riemanniennes holomorphes en dimension $3$. Annales de l'Institut Fourier, Tome 57 (2007) no. 3, pp. 739-773. doi : 10.5802/aif.2275. https://www.numdam.org/articles/10.5802/aif.2275/
[1] Vector fields of a finite type
[2] Compact complex surfaces, Springer-Verlag, 1984 | MR | Zbl
[3] Null-geodesics in complex conformal manifolds and the LeBrun correspondence, J. Reine Angew. Math., Volume 536 (2001), pp. 43-63 | DOI | MR | Zbl
[4] Orbites des structures rigides (d’après M. Gromov), Integrable systems and foliations. Feuilletages et systèmes intégrables. Papers from a colloquium, Montpellier, France, May 22–26, 1995 (Prog. Math.), Volume 145, Birkhäuser, Boston (1997), pp. 1-17 | MR | Zbl
[5] Actions holomorphes et localement libres de groupes de Lie abéliens, École Norm. Sup. de Lyon (1996) (Ph. D. Thesis)
[6] On holomorphic forms on compact complex threefolds, Comment. Math. Helv., Volume 74 (1999) no. 4, pp. 642-656 | DOI | MR | Zbl
[7] Lectures on transformations groups : geometry and dynamics, J. Differential Geom. Suppl., Volume 1 (1991), pp. 19-111 | MR | Zbl
[8] Métriques riemanniennes holomorphes en petite dimension, Ann. Institut Fourier, Volume 51 (2001) no. 6, pp. 1663-1690 | DOI | Numdam | MR | Zbl
[9] Structures géométriques holomorphes sur les variétés complexes compactes, Ann. Sci. École Norm. Sup., Volume 34 (2001) no. 4, pp. 557-571 | Numdam | MR | Zbl
[10] Déformations des structures complexes sur les espaces homogènes de
[11] Rigid transformation groups, Géométrie Différentielle (Travaux en cours), Volume 33, Hermann, Paris, 1988, pp. 65-141 | MR | Zbl
[12] Linear algebraic groups, Graduate Texts in Mathematics, 21, Springer-Verlag, 1975 | MR | Zbl
[13] Uniruled projective manifolds with irreducible reductive
[14] Holomorphic affine connections on compact complex surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 27 (1980) no. 2, pp. 247-264 | MR | Zbl
[15] Spaces of complex null geodesics in complex-Riemannian geometry, Trans. Amer. Math. Soc., Volume 278 (1983), pp. 209-231 | DOI | MR | Zbl
[16] Curvatures of Left Invariant Metrics on Lie Groups, Advances in Math., Volume 21 (1976), pp. 293-329 | DOI | MR | Zbl
[17] Riemannian Foliations, Birkhäuser, 1988 | MR | Zbl
[18] Introduction to algebraic geometry, Harvard University, 1966
[19] On local and global existence of Killing vector fields, Ann. Math., Volume 72 (1960) no. 2, pp. 105-120 | DOI | MR | Zbl
[20] Infinitesimally homogeneous spaces, Comm. Pure Appl. Math., Volume 13 (1960), pp. 685-697 | DOI | MR | Zbl
[21] On compact analytic threefolds with non-trivial Albanese tori, Math. Ann., Volume 278 (1987), pp. 41-70 | DOI | MR | Zbl
[22] Affine structures on compact complex manifolds, Inventiones math., Volume 17 (1972), pp. 231-244 | DOI | MR | Zbl
[23] Geometric structures on compact complex analytic surfaces, Topology, Volume 25 (1986) no. 2, pp. 119-153 | DOI | MR | Zbl
[24] Complexe parallelisable manifolds, Proc. Amer. Math. Soc., Volume 5 (1954), pp. 771-776 | DOI | Zbl
[25] Spaces of constant curvature, Series in Higher Math., McGraw-Hill, 1967 | MR | Zbl
[26] Killing fields in compact Lorentz
[27] Geodesic foliations in Lorentz
Cité par Sources :