On considère l’application du billard dans le cube de . On code cette application par les faces du cube. On obtient un langage, dont on cherche à évaluer la complexité. On montre que l’ordre de grandeur de cette fonction est .
We consider the billiard map in the hypercube of . We obtain a language by coding the billiard map by the faces of the hypercube. We investigate the complexity function of this language. We prove that is the order of magnitude of the complexity.
Keywords: Symbolic dynamic, billiard, words, complexity function
Mot clés : Dynamique symbolique, billard, mots, complexité
@article{AIF_2007__57_3_719_0, author = {Bedaride, Nicolas and Hubert, Pascal}, title = {Billiard complexity in the hypercube}, journal = {Annales de l'Institut Fourier}, pages = {719--738}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {57}, number = {3}, year = {2007}, doi = {10.5802/aif.2274}, zbl = {1138.37017}, mrnumber = {2336827}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2274/} }
TY - JOUR AU - Bedaride, Nicolas AU - Hubert, Pascal TI - Billiard complexity in the hypercube JO - Annales de l'Institut Fourier PY - 2007 SP - 719 EP - 738 VL - 57 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2274/ DO - 10.5802/aif.2274 LA - en ID - AIF_2007__57_3_719_0 ER -
%0 Journal Article %A Bedaride, Nicolas %A Hubert, Pascal %T Billiard complexity in the hypercube %J Annales de l'Institut Fourier %D 2007 %P 719-738 %V 57 %N 3 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2274/ %R 10.5802/aif.2274 %G en %F AIF_2007__57_3_719_0
Bedaride, Nicolas; Hubert, Pascal. Billiard complexity in the hypercube. Annales de l'Institut Fourier, Tome 57 (2007) no. 3, pp. 719-738. doi : 10.5802/aif.2274. http://www.numdam.org/articles/10.5802/aif.2274/
[1] Complexity of sequences defined by billiard in the cube, Bull. Soc. Math. France, Volume 122 (1994) no. 1, pp. 1-12 | EuDML | Numdam | MR | Zbl
[2] Complexity of trajectories in rectangular billiards, Comm. Math. Phys., Volume 174 (1995) no. 1, pp. 43-56 | DOI | MR | Zbl
[3] Billiard complexity in rational polyhedra, Regul. Chaotic Dyn., Volume 8 (2003) no. 1, pp. 97-104 | DOI | MR | Zbl
[4] Entropy of polyhedral billiard (2005) (submitted) | Zbl
[5] A generalization of Baryshnikov’s formula. (2006) (Preprint)
[6] A geometric proof of the enumeration formula for Sturmian words, Internat. J. Algebra Comput., Volume 3 (1993) no. 3, pp. 349-355 | DOI | MR | Zbl
[7] Complexité et facteurs spéciaux, Bull. Belg. Math. Soc. Simon Stevin, Volume 4 (1997) no. 1, pp. 67-88 Journées Montoises (Mons, 1994) | EuDML | MR | Zbl
[8] Complexity and growth for polygonal billiards, Ann. Inst. Fourier, Volume 52 (2002) no. 3, pp. 835-847 | DOI | EuDML | Numdam | MR | Zbl
[9] Intersection theory, Springer-Verlag, Volume 2 (1998), pp. xiv+470 | MR | Zbl
[10] Local instability of orbits in polygonal and polyhedral billiards, Comm. Math. Phys., Volume 169 (1995) no. 3, pp. 463-473 | DOI | MR | Zbl
[11] An introduction to the theory of numbers, The Clarendon Press Oxford University Press, New York, 1979 | MR | Zbl
[12] Complexité de suites définies par des billards rationnels, Bull. Soc. Math. France, Volume 123 (1995) no. 2, pp. 257-270 | Numdam | MR | Zbl
[13] The growth rate for the number of singular and periodic orbits for a polygonal billiard, Comm. Math. Phys., Volume 111 (1987) no. 1, pp. 151-160 | DOI | MR | Zbl
[14] The growth rate of trajectories of a quadratic differential, Ergodic Theory Dynam. Systems, Volume 10 (1990) no. 1, pp. 151-176 | DOI | MR | Zbl
[15] On the number of factors of Sturmian words, Theoret. Comput. Sci., Volume 82 (1991) no. 1, Algorithms Automat. Complexity Games, pp. 71-84 | DOI | MR | Zbl
[16] Symbolic dynamics II. Sturmian trajectories, Amer. J. Math., Volume 62 (1940), pp. 1-42 | DOI | MR | Zbl
Cité par Sources :