Atomic surfaces, tilings and coincidences II. Reducible case
[Surfaces atomiques, pavages et coïncidences II]
Annales de l'Institut Fourier, Tome 56 (2006) no. 7, pp. 2285-2313.

Les surfaces atomiques des substitutions unimodulaires de type Pisot ont été étudiées par de nombreux auteurs. Dans cet article, nous étudions les surfaces atomiques des substitutions Pisot de type réductible.

Par analogie avec le cas irréductible, nous définissons la notion de surfaces plissées et de substitution duale agissant dessus. Grâce à ces notions, nous donnons une preuve simple du fait que les surfaces atomiques forment un système de pavage auto-similaire. Nous montrons que les surfaces atomiques sont quasi-périodiques, ce qui implique qu’un recouvrement non périodique par les surfaces atomiques recouvre l’espace exactement k fois.

Les surfaces atomiques ont été introduites à l’origine par Rauzy dans le but d’étudier le spectre des systèmes dynamiques substitutifs via un pavage périodique. Cependant, nous montrons qu’il n’est pas évident de savoir si les surfaces atomiques peuvent paver l’espace périodiquement ou non, en raison de la complexité du cas réductible. Il semble que la géométrie des surfaces atomiques ne peut pas être appliquée directement au problème spectral.

The atomic surfaces of unimodular Pisot substitutions of irreducible type have been studied by many authors. In this article, we study the atomic surfaces of Pisot substitutions of reducible type.

As an analogue of the irreducible case, we define the stepped-surface and the dual substitution over it. Using these notions, we give a simple proof to the fact that atomic surfaces form a self-similar tiling system. We show that the stepped-surface possesses the quasi-periodic property, which implies that a non-periodic covering by the atomic surfaces covers the space exactly k-times.

The atomic surfaces are originally designed by Rauzy to study the spectrum of the substitution dynamical system via a periodic tiling. However, we show that, since the stepped-surface is complicated in the reducible case, it is not clear whether the atomic surfaces can tile the space periodically or not. It seems that the geometry of the atomic surfaces can not applied directly to the spectral problem.

DOI : 10.5802/aif.2241
Classification : 52C23, 37A45, 28A80, 11B85
Keywords: Atomic surfaces, Pisot substitution, tiling
Mot clés : surfaces atomiques, substitution de Pivot, pavages
Ei, Hiromi 1 ; Ito, Shunji 2 ; Rao, Hui 3

1 Chuo University Kasuga, Bunkyo-ku Department of Information and System Engineering Tokyo (Japan)
2 Kanazawa University Department of Mathematical Kanazawa (Japan)
3 Tsinghua University Department of Mathematics Beijing (China)
@article{AIF_2006__56_7_2285_0,
     author = {Ei, Hiromi and Ito, Shunji and Rao, Hui},
     title = {Atomic surfaces, tilings and coincidences {II.} {Reducible} case},
     journal = {Annales de l'Institut Fourier},
     pages = {2285--2313},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {56},
     number = {7},
     year = {2006},
     doi = {10.5802/aif.2241},
     zbl = {1119.52013},
     mrnumber = {2290782},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2241/}
}
TY  - JOUR
AU  - Ei, Hiromi
AU  - Ito, Shunji
AU  - Rao, Hui
TI  - Atomic surfaces, tilings and coincidences II. Reducible case
JO  - Annales de l'Institut Fourier
PY  - 2006
SP  - 2285
EP  - 2313
VL  - 56
IS  - 7
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2241/
DO  - 10.5802/aif.2241
LA  - en
ID  - AIF_2006__56_7_2285_0
ER  - 
%0 Journal Article
%A Ei, Hiromi
%A Ito, Shunji
%A Rao, Hui
%T Atomic surfaces, tilings and coincidences II. Reducible case
%J Annales de l'Institut Fourier
%D 2006
%P 2285-2313
%V 56
%N 7
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.2241/
%R 10.5802/aif.2241
%G en
%F AIF_2006__56_7_2285_0
Ei, Hiromi; Ito, Shunji; Rao, Hui. Atomic surfaces, tilings and coincidences II. Reducible case. Annales de l'Institut Fourier, Tome 56 (2006) no. 7, pp. 2285-2313. doi : 10.5802/aif.2241. http://www.numdam.org/articles/10.5802/aif.2241/

[1] Akiyama, S. Self-affine tiling and Pisot numeration system, Number theory and its applications (Dev. Math.), Kluwer Acad. Plubl., Dordrecht, 1999 no. 2, pp. 7-17 | MR | Zbl

[2] Akiyama, S. On the boundary of self-affine tilings generated by Pisot numbers, J. Math. Soc. Japan, Volume 54 (2002) no. 2, pp. 283-308 | DOI | MR | Zbl

[3] Akiyama, S.; Rao, H.; Steiner, W. A certain finiteness property of Pisot number systems, J. Number Theory, Volume 107 (2004), pp. 135-160 | DOI | MR | Zbl

[4] Arnoux, P.; Berthé, V.; Ito, S. Discrete planes, 2 -actions, Jacobi-Perron algorithm and substitutions, Ann. Inst. Fourier (Grenoble), Volume 52 (2002) no. 2, pp. 305-349 | DOI | Numdam | MR | Zbl

[5] Arnoux, P.; Ito, S. Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc., Volume 8 (2001), pp. 181-207 | MR | Zbl

[6] Baker, V.; Barge, M.; Kwapisz, J. Geometric realization and coincidence for reducible non-unimodular Pisot tiling spaces with an application to β-shifts (2005) (Preprint) | MR

[7] Bandt, C. Self-similar sets. V. Integer matrices and fractal tilings of n , Proc. Amer. Math. Soc., Volume 112 (1991) no. 2, pp. 549-562 | MR | Zbl

[8] Barge, M.; Diamond, B. Coincidence for substitutions of Pisot type, Bull. Soc. Math. France, Volume 130 (2002) no. 4, pp. 619-626 | Numdam | MR | Zbl

[9] Barge, M.; Kwapisz, J. Geometric theory of unimodular Pisot substitutions (2004) (Preprint) | MR | Zbl

[10] Bernat, J.; Berthé, V.; Rao, H. On the super-coincidence condition (2006) (Preprint)

[11] Berthé, V.; Siegel, A. Tilings associated with beta-numeration and substitutions, Electronic J. Comb. Number Theory, Volume 5 (2005) no. 3, pp. #A02 | MR | Zbl

[12] Dekking, F. M. The spectrum of dynamical systems arising from substitutions of constant length, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, Volume 41 (1977/78) no. 3, pp. 221-239 | DOI | MR | Zbl

[13] Durand, F.; Thomas, A. Systèmes de numération et fonctions fractales relatifs aux substitutions, Theoret. Comput. Sci., Volume 65 (1989) no. 2, pp. 153-169 | DOI | MR | Zbl

[14] Ei, H.; Ito, S. Tilings from some non-irreducible, Pisot substitutions, Discrete Mathematics and Theoretical Computer Science, Volume 7 (2005) no. 1, pp. 81-122 | MR | Zbl

[15] Ei, H.; Ito, S.; Rao, H. Atomic surfaces, tilings and coincidences III: β -tiling and super-coincidence (In preparation)

[16] Falconer, K. Techniques in fractal geometry, John Wiley & Sons Ltd., Chichester, 1997 | MR | Zbl

[17] Fogg, N. Substitutions in dynamics, arithmetics and combinatorics, Lecture Notes in Mathematics, 1794, Springer-Verlag, Berlin, 2002 | MR | Zbl

[18] Frougny, C.; Solomyak, B. Finite beta-expansions, Ergodic Theory & Dynam. Sys., Volume 12 (1992), pp. 713-723 | MR | Zbl

[19] Host, B. (unpublished manuscript)

[20] Ito, S.; Rao, H. Atomic surfaces, tilings and coincidences I. Irreducible case (To appear in Israel J. Math.) | MR | Zbl

[21] Ito, S.; Rao, H. Purely periodic β-expansions with Pisot unit base, Proc. Amer. Math. Soc., Volume 133 (2005), pp. 953-964 | DOI | MR | Zbl

[22] Ito, S.; Sano, Y. On periodic β-expansions of Pisot numbers and Rauzy fractals, Osaka J. Math., Volume 38 (2001), pp. 349-368 | MR | Zbl

[23] Kenyon, R. Self-replicating tilings, Symbolic dynamics and its applications, Contemporary mathematics series, 135, P. Walters, ed., 1992 | Zbl

[24] Lagarias, J.; Wang, Y. Self-affine tiles in n , Adv. Math., Volume 121 (1996) no. 1, pp. 21-49 | DOI | MR | Zbl

[25] Lagarias, J.; Wang, Y. Substitution Delone sets, Discrete Comput. Geom., Volume 29 (2003) no. 2, pp. 175-209 | MR | Zbl

[26] Praggastis, B. Numeration systems and Markov partitions from self-similar tilings, Trans. Amer. Math. Soc., Volume 351 (1999) no. 8, pp. 3315-3349 | DOI | MR | Zbl

[27] Queffelec, M. Substitution Dynamical Systems - Spectral Analysis, Lecture Notes in Math., 1294, Springer-Verlag, Berlin, 1987 | MR | Zbl

[28] Rauzy, G. Nombres algébriques et substitutions, Bull. Soc. Math. France, Volume 110 (1982), pp. 147-178 | Numdam | MR | Zbl

[29] Senechal, M. Quasicrystals and Geometry, Cambridge University Press, 1995 | MR | Zbl

[30] Siegel, A. Représentations géométrique, combinatoire et arithmétique des systèmes substitutifs de type Pisot, Université de la Méditérranée (2000) (Thèse de doctorat)

[31] Siegel, A. Pure discrete spectrum dynamical system and periodic tiling associated with a substitution, Ann. Inst. Fourier (Grenoble), Volume 54 (2004) no. 2, pp. 341-381 | DOI | Numdam | MR | Zbl

[32] Sirvent, V.; Wang, Y. Self-affine tiling via substitution dynamical systems and Rauzy fractals, Pacific J. Math., Volume 206 (2002) no. 2, pp. 465-485 | DOI | MR | Zbl

[33] Thurston, W. P. Groups, tilings, and finite state automata, AMS Colloquium Lectures, Providence, RI, 1989

[34] Thuswaldner, J. Unimodular Pisot substitutions and their associated tiles (To appear in J. Théor. Nombres Bordeaux) | Numdam | Zbl

[35] Vince, A. Digit tiling of Euclidean space, Center de Recherches Mathematiques CRM Monograph Series, Volume 13 (2000), pp. 329-370 | MR | Zbl

Cité par Sources :