Un nombre de Parry simple est un nombre réel tel que le développement de Rényi de est fini, de la forme . Nous étudions la structure palindromique des mots infinis apériodiques qui sont point fixe d’une substitution associée à un nombre de Parry simple . Nous montrons que le mot contient un nombre infini de palindromes si et seulement si . Les nombres satisfaisant cette condition sont connus sous le nom de nombres de Pisot confluents. Si de plus alors est un mot d’Arnoux-Rauzy. Nous montrons que si est un nombre de Pisot confluent alors , où est le nombre de facteurs de longueur de . Nous donnons aussi une description complète de l’ensemble des palindromes, de sa structure et de ses propriétés.
A simple Parry number is a real number such that the Rényi expansion of is finite, of the form . We study the palindromic structure of infinite aperiodic words that are the fixed point of a substitution associated with a simple Parry number . It is shown that the word contains infinitely many palindromes if and only if . Numbers satisfying this condition are the so-called confluent Pisot numbers. If then is an Arnoux-Rauzy word. We show that if is a confluent Pisot number then , where is the number of palindromes and is the number of factors of length in . We then give a complete description of the set of palindromes, its structure and properties.
Keywords: beta-expansions, palindromic complexity
Mot clés : beta-développements, complexité palindromique
@article{AIF_2006__56_7_2131_0, author = {Ambro\v{z}, Petr and Mas\'akov\'a, Zuzana and Pelantov\'a, Edita and Frougny, Christiane}, title = {Palindromic complexity of infinite words associated with simple {Parry} numbers}, journal = {Annales de l'Institut Fourier}, pages = {2131--2160}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {56}, number = {7}, year = {2006}, doi = {10.5802/aif.2236}, zbl = {1121.68089}, mrnumber = {2290777}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2236/} }
TY - JOUR AU - Ambrož, Petr AU - Masáková, Zuzana AU - Pelantová, Edita AU - Frougny, Christiane TI - Palindromic complexity of infinite words associated with simple Parry numbers JO - Annales de l'Institut Fourier PY - 2006 SP - 2131 EP - 2160 VL - 56 IS - 7 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2236/ DO - 10.5802/aif.2236 LA - en ID - AIF_2006__56_7_2131_0 ER -
%0 Journal Article %A Ambrož, Petr %A Masáková, Zuzana %A Pelantová, Edita %A Frougny, Christiane %T Palindromic complexity of infinite words associated with simple Parry numbers %J Annales de l'Institut Fourier %D 2006 %P 2131-2160 %V 56 %N 7 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2236/ %R 10.5802/aif.2236 %G en %F AIF_2006__56_7_2131_0
Ambrož, Petr; Masáková, Zuzana; Pelantová, Edita; Frougny, Christiane. Palindromic complexity of infinite words associated with simple Parry numbers. Annales de l'Institut Fourier, Tome 56 (2006) no. 7, pp. 2131-2160. doi : 10.5802/aif.2236. http://www.numdam.org/articles/10.5802/aif.2236/
[1] Une caractérisation simple des nombres de Sturm, J. Théor. Nombres Bordeaux, Volume 10 (1998) no. 2, pp. 237-241 | DOI | Numdam | MR | Zbl
[2] Palindrome complexity, Theoret. Comput. Sci., Volume 292 (2003) no. 1, pp. 9-31 (Selected papers in honor of Jean Berstel) | DOI | MR | Zbl
[3] Représentation géométrique de suites de complexité , Bull. Soc. Math. France, Volume 119 (1991) no. 2, pp. 199-215 | Numdam | MR | Zbl
[4] Complete characterization of substitution invariant Sturmian sequences, Integers, Volume 5 (2005) no. 1, pp. A14, 23 pp. (electronic) | MR | Zbl
[5] Factor versus palindromic complexity of uniformly recurrent infinite words (2006) (To appear in Theor. Comp. Sci.) | MR | Zbl
[6] Palindromic complexity of infinite words coding interval exchange transformations, Words 2005, 5 International Conference on Words, actes (Publications du LaCIM), Volume 36, UQÀM, 2005, pp. 113-118
[7] Factor and palindromic complexity for infninite words associated with quadratic non-simple Parry numbers (2006) (Preprint Doppler Institute, Prague)
[8] Pisot-cyclotomic quasilattices and their symmetry semigroups, Quasicrystals and discrete geometry (Toronto, ON, 1995) (Fields Inst. Monogr.), Volume 10, Amer. Math. Soc., Providence, RI, 1998, pp. 15-66 | MR | Zbl
[9] Propriétés arithmétiques de la -numération, Univesité de la Méditeranée (2005) (Ph. D. Thesis)
[10] Recent results on extensions of Sturmian words, Internat. J. Algebra Comput., Volume 12 (2002) no. 1-2, pp. 371-385 International Conference on Geometric and Combinatorial Methods in Group Theory and Semigroup Theory (Lincoln, NE, 2000) | DOI | MR | Zbl
[11] Infinite words without palindrome (2006) (Preprint)
[12] Invertible susbtitutions and Sturmian words: an application of Rauzy fractals (2006) (To appear in Theoret. Informatics Appl.)
[13] Développements en base de Pisot et répartition modulo , C. R. Acad. Sci. Paris, Volume 285 (1977), pp. 419-421 | MR | Zbl
[14] Comment écrire les nombres entiers dans une base qui n’est pas entière, Acta Math. Hungar., Volume 54 (1989) no. 3-4, pp. 237-241 | DOI | MR | Zbl
[15] On the palindromic complexity of infinite words, Internat. J. Found. Comput. Sci., Volume 15 (2004) no. 2, pp. 293-306 | DOI | MR | Zbl
[16] Beta-integers as natural counting systems for quasicrystals, J. Phys. A, Volume 31 (1998) no. 30, pp. 6449-6472 | DOI | MR | Zbl
[17] Complexité et facteurs spéciaux, Bull. Belg. Math. Soc. Simon Stevin, Volume 4 (1997) no. 1, pp. 67-88 Journées Montoises (Mons, 1994) | MR | Zbl
[18] Combinatorial properties of Arnoux-Rauzy subshifts and applications to Schrödinger operators, Rev. Math. Phys., Volume 15 (2003) no. 7, pp. 745-763 | DOI | MR | Zbl
[19] Epi-Sturmian words and some constructions of de Luca and Rauzy, Theoret. Comput. Sci., Volume 255 (2001) no. 1-2, pp. 539-553 | DOI | MR | Zbl
[20] Palindromes and Sturmian words, Theoret. Comput. Sci., Volume 223 (1999) no. 1-2, pp. 73-85 | DOI | MR | Zbl
[21] Substitutions et -systèmes de numération, Theoret. Comput. Sci., Volume 137 (1995) no. 2, pp. 219-236 | DOI | MR | Zbl
[22] Confluent linear numeration systems, Theoret. Comput. Sci., Volume 106 (1992) no. 2, pp. 183-219 | DOI | MR | Zbl
[23] Complexity of infinite words associated with beta-expansions, Theor. Inform. Appl., Volume 38 (2004) no. 2, pp. 163-185 Corrigendum. Theor. Inform. Appl. 38 (2004), 269–271. | DOI | Numdam | MR | Zbl
[24] Infinite left special branches in words associated with beta expansions (2005) (To appear in J. Autom. Lang. Comb.)
[25] Singular continuous spectrum for palindromic Schrödinger operators, Comm. Math. Phys., Volume 174 (1995) no. 1, pp. 149-159 | DOI | MR | Zbl
[26] Episturmian words and episturmian morphisms, Theoret. Comput. Sci., Volume 276 (2002) no. 1-2, pp. 281-313 | DOI | MR | Zbl
[27] Interval exchange transformations, Math. Z., Volume 141 (1975), pp. 25-31 | DOI | MR | Zbl
[28] Algebraic Combinatorics on Words, Encyclopedia of Mathematics and its Applications, 90, Cambridge University Press, Cambridge, 2002 | MR | Zbl
[29] On the -expansions of real numbers, Acta Math. Acad. Sci. Hungar., Volume 11 (1960), pp. 401-416 | DOI | MR | Zbl
[30] Substitution invariant Sturmian bisequences, J. Théor. Nombres Bordeaux, Volume 11 (1999) no. 1, pp. 201-210 Les XXèmes Journées Arithmétiques (Limoges, 1997) | DOI | Numdam | MR | Zbl
[31] Substitutions in Dynamics, Arithmetics and Combinatorics, Lecture Notes in Mathematics, 1794, Springer Verlag, 2002 (402 pages) | MR | Zbl
[32] Substitution dynamical systems—spectral analysis, Lecture Notes in Mathematics, 1294, Springer-Verlag, Berlin, 1987 | MR | Zbl
[33] Échanges d’intervalles et transformations induites, Acta Arith., Volume 34 (1979) no. 4, pp. 315-328 | MR | Zbl
[34] Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar, Volume 8 (1957), pp. 477-493 | DOI | MR | Zbl
[35] Conjugates of beta-numbers and the zero-free domain for a class of analytic functions, Proc. London Math. Soc. (3), Volume 68 (1994) no. 3, pp. 477-498 | DOI | MR | Zbl
[36] On Sturmian sequences which are invariant under some substitutions, Number theory and its applications (Kyoto, 1997) (Dev. Math.), Volume 2, Kluwer Acad. Publ., Dordrecht, 1999, pp. 347-373 | MR | Zbl
Cité par Sources :