Orthogonal bundles on curves and theta functions
[Fibrés orthogonaux sur les courbes et fonctions thêta]
Annales de l'Institut Fourier, Tome 56 (2006) no. 5, pp. 1405-1418.

Soient l’espace des modules des fibrés SO r -principaux sur une courbe C, et le fibré déterminant sur . Nous définissons un isomorphisme de H 0 (,) sur le dual de l’espace des fonctions thêta du r-ième ordre sur la Jacobienne de C. Cet isomorphisme identifie l’application rationnelle || * définie par le système linéaire || avec l’application |rΘ| qui associe à un fibré quadratique (E,q) le diviseur thêta Θ E . Les deux composantes + et - de sont envoyées sur les sous-espaces de fonctions paires et impaires respectivement. Finalement nous discutons le problème analogue pour les fibrés symplectiques.

Let be the moduli space of principal SO r -bundles on a curve C, and the determinant bundle on . We define an isomorphism of H 0 (,) onto the dual of the space of r-th order theta functions on the Jacobian of C. This isomorphism identifies the rational map || * defined by the linear system || with the map |rΘ| which associates to a quadratic bundle (E,q) the theta divisor Θ E . The two components + and - of are mapped into the subspaces of even and odd theta functions respectively. Finally we discuss the analogous question for Sp 2r -bundles.

DOI : 10.5802/aif.2216
Classification : 14H60
Keywords: Principal bundles, orthogonal bundles, symplectic bundles, theta divisors, generalized theta functions, Verlinde formula, strange duality
Mot clés : fibrés principaux, fibrés orthogonaux, fibrés symplectiques, diviseurs thêta, fonctions thêta généralisées, formule de Verlinde, dualité étrange
Beauville, Arnaud 1

1 Université de Nice Laboratoire J.A. Dieudonné Parc Valrose 06108 Nice Cedex 2 (France)
@article{AIF_2006__56_5_1405_0,
     author = {Beauville, Arnaud},
     title = {Orthogonal bundles on curves and theta functions},
     journal = {Annales de l'Institut Fourier},
     pages = {1405--1418},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {56},
     number = {5},
     year = {2006},
     doi = {10.5802/aif.2216},
     zbl = {1114.14021},
     mrnumber = {2273860},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2216/}
}
TY  - JOUR
AU  - Beauville, Arnaud
TI  - Orthogonal bundles on curves and theta functions
JO  - Annales de l'Institut Fourier
PY  - 2006
SP  - 1405
EP  - 1418
VL  - 56
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2216/
DO  - 10.5802/aif.2216
LA  - en
ID  - AIF_2006__56_5_1405_0
ER  - 
%0 Journal Article
%A Beauville, Arnaud
%T Orthogonal bundles on curves and theta functions
%J Annales de l'Institut Fourier
%D 2006
%P 1405-1418
%V 56
%N 5
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.2216/
%R 10.5802/aif.2216
%G en
%F AIF_2006__56_5_1405_0
Beauville, Arnaud. Orthogonal bundles on curves and theta functions. Annales de l'Institut Fourier, Tome 56 (2006) no. 5, pp. 1405-1418. doi : 10.5802/aif.2216. http://www.numdam.org/articles/10.5802/aif.2216/

[1] Alexeev, A.; Meinrenken, E.; Woodward, C. Formulas of Verlinde type for non-simply connected groups (Preprint, math.SG/0005047) | MR

[2] Beauville, A. Vector bundles on curves and theta functions Preprint, math.AG/0502179, Proc. of the conf. "Moduli spaces and arithmetic geometry" (Kyoto, 2004). Advanced studies in pure math, to appear

[3] Beauville, A. Fibrés de rang 2 sur les courbes, fibré déterminant et fonctions thêta II, Bull. Soc. Math. France, Volume 119 (1991) no. 3, pp. 259-291 | Numdam | MR | Zbl

[4] Beauville, A. Conformal blocks, Fusion rings and the Verlinde formula, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993) (Israel Math. Conf. Proc.), Volume 9 (1996), pp. 75-96 | MR | Zbl

[5] Beauville, A.; Laszlo, Y.; Sorger, C. The Picard group of the moduli of G-bundles on a curve, Compositio Math., Volume 112 (1998) no. 2, pp. 183-216 | DOI | MR | Zbl

[6] Beauville, A.; Narasimhan, M.S.; Ramanan, S. Spectral curves and the generalised theta divisor, J. Reine Angew. Math., Volume 398 (1989), pp. 169-179 | DOI | MR | Zbl

[7] Bourbaki, N. Groupes et algèbres de Lie. Chap. VI, Hermann, Paris, 1968 | MR | Zbl

[8] Drezet, J.-M.; Narasimhan, M.S. Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. Math., Volume 97 (1989) no. 1, pp. 53-94 | DOI | MR | Zbl

[9] Dynkin, E. Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Translations (II), Volume 6 (1957), pp. 111-244 | Zbl

[10] Kumar, S.; Narasimhan, M.S. Picard group of the moduli spaces of G-bundles, Math. Ann., Volume 308 (1997) no. 1, pp. 155-173 | DOI | MR | Zbl

[11] Laszlo, Y. À propos de l’espace des modules de fibrés de rang 2 sur une courbe, Math. Ann., Volume 299 (1994) no. 4, pp. 597-608 | DOI | MR | Zbl

[12] Laszlo, Y.; Sorger, C. The line bundles on the moduli of parabolic G-bundles over curves and their sections, Ann. Sci. École Norm. Sup. (4), Volume 30 (1997) no. 4, pp. 499-525 | Numdam | MR | Zbl

[13] Mumford, D. On the equations defining abelian varieties, I, Invent. Math., Volume 1 (1966), pp. 287-354 | DOI | MR | Zbl

[14] Mumford, D. Varieties defined by quadratic equations, Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969), Edizioni Cremonese, Rome, 1970, pp. 29-100 | MR | Zbl

[15] Oxbury, W.; Wilson, S. Reciprocity laws in the Verlinde formulae for the classical groups, Trans. Amer. Math. Soc., Volume 348 (1996) no. 7, pp. 2689-2710 | DOI | MR | Zbl

[16] Ramanan, S. Orthogonal and spin bundles over hyperelliptic curves, Proc. Indian Acad. Sci. Math. Sci., Volume 90 (1981) no. 2, pp. 151-166 | DOI | MR | Zbl

[17] Serre, J.-P. Revêtements à ramification impaire et thêta-caractéristiques, C. R. Acad. Sci. Paris Sér. I Math., Volume 311 (1990) no. 9, pp. 547-552 | MR | Zbl

[18] Sorger, C. On moduli of G-bundles of a curve for exceptional G, Ann. Sci. École Norm. Sup. (4), Volume 32 (1999) no. 1, pp. 127-133 | Numdam | MR | Zbl

Cité par Sources :