Pour tout nombre entier , nous construisons un ensemble d’entiers qui est un ensemble de récurrence multiple à l’ordre mais pas à l’ordre . Cela étend une construction de Furstenberg qui a construit un ensemble de récurrence qui n’est pas un ensemble de 2-récurrence. Nous obtenons un résultat similaire pour la convergence des moyennes ergodiques multiples. Comme conséquence de notre construction, nous exhibons aussi un résultat combinatoire relié au théorème de Szemerédi.
For every , we produce a set of integers which is -recurrent but not -recurrent. This extends a result of Furstenberg who produced a -recurrent set which is not -recurrent. We discuss a similar result for convergence of multiple ergodic averages. We also point out a combinatorial consequence related to Szemerédi’s theorem.
Keywords: Ergodic theory, recurrence, multiple recurrence, combinatorial additive number theory
Mot clés : théorie ergodique, récurrence, récurrence multiple, combinatoire additive des nombres
@article{AIF_2006__56_4_839_0, author = {Frantzikinakis, Nikos and Lesigne, Emmanuel and Wierdl, M\'at\'e}, title = {Sets of $k$-recurrence but not $(k+1)$-recurrence}, journal = {Annales de l'Institut Fourier}, pages = {839--849}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {56}, number = {4}, year = {2006}, doi = {10.5802/aif.2202}, zbl = {1123.37001}, mrnumber = {2266880}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2202/} }
TY - JOUR AU - Frantzikinakis, Nikos AU - Lesigne, Emmanuel AU - Wierdl, Máté TI - Sets of $k$-recurrence but not $(k+1)$-recurrence JO - Annales de l'Institut Fourier PY - 2006 SP - 839 EP - 849 VL - 56 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2202/ DO - 10.5802/aif.2202 LA - en ID - AIF_2006__56_4_839_0 ER -
%0 Journal Article %A Frantzikinakis, Nikos %A Lesigne, Emmanuel %A Wierdl, Máté %T Sets of $k$-recurrence but not $(k+1)$-recurrence %J Annales de l'Institut Fourier %D 2006 %P 839-849 %V 56 %N 4 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2202/ %R 10.5802/aif.2202 %G en %F AIF_2006__56_4_839_0
Frantzikinakis, Nikos; Lesigne, Emmanuel; Wierdl, Máté. Sets of $k$-recurrence but not $(k+1)$-recurrence. Annales de l'Institut Fourier, Tome 56 (2006) no. 4, pp. 839-849. doi : 10.5802/aif.2202. http://www.numdam.org/articles/10.5802/aif.2202/
[1] Weakly mixing PET, Ergodic Theory Dynamical Systems, Volume 7 (1987) no. 3, pp. 337-349 | MR | Zbl
[2] Ergodic Ramsey theory-an update, Ergodic Theroy of -actions, Cambridge University Press, Cambridge, 1996, pp. 1-61 | MR | Zbl
[3] Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math., Volume 71 (1977), pp. 204-256 | DOI | MR | Zbl
[4] Recurrence in ergodic theory and combinatorial number theory, Princeton University Press, Princeton, N.J., 1981 (M. B. Porter Lectures) | MR | Zbl
[5] An ergodic Szemerédi theorem for commuting transformations, J. Analyse Math., Volume 34 (1979), pp. 275-291 | DOI | MR | Zbl
[6] The ergodic theoretical proof of Szemerédi’s theorem, Bull. Amer. Math. Soc. (N.S.), Volume 7 (1982) no. 3, pp. 527-552 | DOI | MR | Zbl
[7] Nonconventional ergodic averages and nilmanifolds, Annals of Math, Volume 161 (2005) no. 1, pp. 397-488 | DOI | MR | Zbl
[8] Chromatic numbers of Cayley graphs on and recurrence, Combinatorica, Volume 21 (2001) no. 2, pp. 211-219 Paul Erdős and his mathematics (Budapest, 1999) | DOI | MR | Zbl
[9] Universal Characteristic Factors and Furstenberg Averages, http://www.arxiv.org/abs/math.DS/0403212 (To appear in Journal of the AMS)
Cité par Sources :