Soit une -algèbre commutative, où S désigne un anneau contenant les nombres rationnels. Nous démontrons l’existence d’un caractère de Chern pour les algèbres de Lie sur à valeurs dans la cohomologie de Lie-Rinehart de , qui est indépendante d’un choix de -connexion. Notre résultat établit une généralisation du caractère de Chern classique en -théorie à la cohomologie de De Rham algébrique.
Let be a commutative -algebra where is a ring containing the rationals. We prove the existence of a Chern character for Lie-Rinehart algebras over A with values in the Lie-Rinehart cohomology of L which is independent of choice of a -connection. Our result generalizes the classical Chern character from the -theory of to the algebraic De Rham cohomology.
Keywords: Lie-Rinehart algebra, connection, de Rham cohomology, Lie-Rinehart cohomology, Jacobsons Galois correspondence, Lie-Rinehart algebra, connection, de Rham cohomology, Lie-Rinehart cohomology, Jacobsons Galois correspondence
Mot clés : algèbres de Lie-Rinehart, connexion, cohomologie de De Rham, cohomologie de Lie-Rinehart, correspondance de Galois de Jacobson.
@article{AIF_2005__55_7_2551_0, author = {Maakestad, Helge}, title = {The {Chern} character for {Lie-Rinehart} algebras}, journal = {Annales de l'Institut Fourier}, pages = {2551--2574}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {7}, year = {2005}, doi = {10.5802/aif.2170}, mrnumber = {2207393}, zbl = {1097.14004}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2170/} }
TY - JOUR AU - Maakestad, Helge TI - The Chern character for Lie-Rinehart algebras JO - Annales de l'Institut Fourier PY - 2005 SP - 2551 EP - 2574 VL - 55 IS - 7 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2170/ DO - 10.5802/aif.2170 LA - en ID - AIF_2005__55_7_2551_0 ER -
%0 Journal Article %A Maakestad, Helge %T The Chern character for Lie-Rinehart algebras %J Annales de l'Institut Fourier %D 2005 %P 2551-2574 %V 55 %N 7 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2170/ %R 10.5802/aif.2170 %G en %F AIF_2005__55_7_2551_0
Maakestad, Helge. The Chern character for Lie-Rinehart algebras. Annales de l'Institut Fourier, Tome 55 (2005) no. 7, pp. 2551-2574. doi : 10.5802/aif.2170. http://www.numdam.org/articles/10.5802/aif.2170/
[1] Tannakian categories, Motives (Proc. Sympos. Pure. Math), Volume 55 (1994) (part 2) | MR | Zbl
[2] Crystals and the deRham cohomology of schemes, North-Holland, 1968, pp. 306-358 | MR | Zbl
[3] Motifs (1965-70) (Unpublished notes)
[4] Extensions of Lie-Rinehart algebras and the Chern-Weil construction, Cont. Maths., Volume 227 (1999) | MR | Zbl
[5] Poisson cohomology and quantization, J. für die reine und angewandte Mathematik, Volume 408 (1990) | MR | Zbl
[6] Abstract derivations and Lie algebras, Trans. Amer. Math. Soc., Volume 42 (1937) no. 2 | DOI | MR | Zbl
[7] An algebraic computation of the Alexander-polynomial of a plane algebraic curve, Proc. Japan. Acad. Ser. A Math. Sci, Volume 59 (1983) | DOI | MR | Zbl
[8] Tangential Chern-Weil homomorphism, Geometric study of foliations, World. Sci. Publishing (1994) | MR
[9] Champs algebriques, Ergebnisse der Mathematik un ihrer Grenzgebiete, Springer-Verlag, 2000 no. 39 | Zbl
[10] Cyclic homology, Grundlehren Mathematischen Wissenschaften, 301, Springer Verlag, 1998 | MR | Zbl
[11] Motives over finite fields, Motives (Proc. Sympos. Pure. Math), Volume 55 (1994) (part 2) | MR | Zbl
[12] Differential forms for general commutative algebras, Trans. Amer. Math. Soc., Volume 108 (1963) | DOI | MR | Zbl
[13] An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, 38, Cambridge University Press, 1994 | MR | Zbl
Cité par Sources :