[La formule de Cramér pour les variétés d'Heisenberg]
Let
Soit
Keywords: Heisenberg manifolds, Weyl's law, Cramér's formula, poisson summation formula, Heisenberg manifolds, Weyl's law, Cramér's formula, poisson summation formula
Mots-clés : variété d'Heisenberg, loi de Weyl, formule de Cramér, formule de sommation de Poisson
Khosravi, Mahta 1 ; Toth, John A. 1
@article{AIF_2005__55_7_2489_0, author = {Khosravi, Mahta and Toth, John A.}, title = {Cram\'er's formula for {Heisenberg} manifolds}, journal = {Annales de l'Institut Fourier}, pages = {2489--2520}, publisher = {Association des Annales de l'Institut Fourier}, volume = {55}, number = {7}, year = {2005}, doi = {10.5802/aif.2168}, mrnumber = {2207391}, zbl = {1090.58018}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2168/} }
TY - JOUR AU - Khosravi, Mahta AU - Toth, John A. TI - Cramér's formula for Heisenberg manifolds JO - Annales de l'Institut Fourier PY - 2005 SP - 2489 EP - 2520 VL - 55 IS - 7 PB - Association des Annales de l'Institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2168/ DO - 10.5802/aif.2168 LA - en ID - AIF_2005__55_7_2489_0 ER -
%0 Journal Article %A Khosravi, Mahta %A Toth, John A. %T Cramér's formula for Heisenberg manifolds %J Annales de l'Institut Fourier %D 2005 %P 2489-2520 %V 55 %N 7 %I Association des Annales de l'Institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2168/ %R 10.5802/aif.2168 %G en %F AIF_2005__55_7_2489_0
Khosravi, Mahta; Toth, John A. Cramér's formula for Heisenberg manifolds. Annales de l'Institut Fourier, Tome 55 (2005) no. 7, pp. 2489-2520. doi : 10.5802/aif.2168. https://www.numdam.org/articles/10.5802/aif.2168/
[Be] On the wave equation on a compact Riemannian manifold without conjugate points, Math. Z., Volume 155 (1977) no. 3, pp. 249-276 | DOI | MR | Zbl
[BG] Lattice point problems and distribution of values of quadratic forms, Ann. of Math., Volume 50:3 (1999) no. 2, pp. 977-1027 | DOI | MR | Zbl
[Bl] On the distribution of the number of lattice points inside a family of convex ovals, Duke Math. J., Volume 67 (1992) no. 3, pp. 461-481 | DOI | MR | Zbl
[Bu] Integrable geodesic flows on
[Co] Spectre conjoint d'opérateurs pseudo-diifférentiels qui commtent. II. Le cas intégrable, Math. Z., Volume 171 (1980) no. 1, pp. 51-73 | DOI | MR | Zbl
[Cop] Asymptotic Expansions, Cambridge University Press (1965), pp. 29-33 | MR | Zbl
[CPT] The remained in Weyl's law for Heisenberg manifolds II, Bonner Mathematische Schriften, Bonn, Volume 360 (2003), pp. 16 | MR | Zbl
[Cr] Über zwei Sätze von Herrn G.H. Hardy, Math. Z., Volume 15 (1922), pp. 201-210 | DOI | JFM | MR
[DG] The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., Volume 29 (1975) no. 1, pp. 39-79 | DOI | MR | Zbl
[Fo] Harmonic Analysis in Phase Space, Princeton University Press (1989), pp. 9-73 | MR | Zbl
[Fr] Einführung in die Gitterpunketlehre, [Introduction to lattice point theory], Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften(LMW) (Mathematische Reihe [Textbooks and Monographs in the Exact Sciences]), Volume 73, Birkhäuser Verlag, Basel-Boston, Mas., 1982 | MR | Zbl
[Go] Lattice point problems and values of quadratic forms, Inventiones Mathematicae, Volume 157 (2004) no. 1, pp. 195-226 | DOI | MR | Zbl
[GW] The spectrum of the Laplacian on Reimannian Heisenberg manifolds, Michigan Math. J., Volume 33 (1986) no. 2, pp. 253-271 | DOI | MR | Zbl
[Ha] On the expression of a number as the sum of two squares, Quart. J. Math., Volume 46 (1915), pp. 263-283 | JFM
[Ho] The spectral function of an elliptic operator, Acta Math., Volume 121 (1968), pp. 193-218 | DOI | MR | Zbl
[Hu] Exponential sums and lattice points, II, Proc. London Math. Soc., Volume 66 (1993) no. 2, pp. 279-301 | DOI | MR | Zbl
[Iv] Precise Spectral Asymptotics for elliptic Operators Acting in Fibrings over Manifolds with Boundary, Springer Lecture Notes in Mathematics, Volume 1100 (1984) | MR | Zbl
[KP] The remainder in Weyl's law for n-Dimensional Heisenberg manifolds Proc. of AMS (to appear) | Zbl
[PT] The remainder in Weyl's law for Heisenberg manifolds, J. Diff. Geom., Volume 60 (2002), pp. 455-483 | MR | Zbl
[St] Harmonic Analysis, Princeton University Press (1993), pp. 527-574 | MR | Zbl
[Vo] Improved two-term asymptotics for the eigenvalue distribution function of an ellitic operator on a compact manifold, Comm. Partial Differential Equations, Volume 15 (1990) no. 11, pp. 1509-1563 | DOI | MR | Zbl
- On the error term in Weyl’s law for the Heisenberg manifolds (II), Science in China Series A: Mathematics, Volume 52 (2009) no. 5, p. 857 | DOI:10.1007/s11425-008-0167-z
- The remainder in Weyl’s law for 𝑛-dimensional Heisenberg manifolds, Proceedings of the American Mathematical Society, Volume 133 (2005) no. 12, p. 3561 | DOI:10.1090/s0002-9939-05-08155-4
Cité par 2 documents. Sources : Crossref