Etant donné un noeud
For a knot
Keywords: Knot groups, representation space, volume form, Reidemeister torsion, Casson invariant, adjoint representation, SU(2)
Mot clés : groupe de noeuds, espace de représentations, forme volume, torsion de Reidemeister, invariant de Casson, représentation adjointe, SU(2)
@article{AIF_2005__55_5_1685_0, author = {Dubois, J\'er\^ome}, title = {Non abelian {Reidemeister} torsion and volume form on the {SU(2)-representation} space of knot groups}, journal = {Annales de l'Institut Fourier}, pages = {1685--1734}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {5}, year = {2005}, doi = {10.5802/aif.2136}, mrnumber = {2172277}, zbl = {1077.57009}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2136/} }
TY - JOUR AU - Dubois, Jérôme TI - Non abelian Reidemeister torsion and volume form on the SU(2)-representation space of knot groups JO - Annales de l'Institut Fourier PY - 2005 SP - 1685 EP - 1734 VL - 55 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2136/ DO - 10.5802/aif.2136 LA - en ID - AIF_2005__55_5_1685_0 ER -
%0 Journal Article %A Dubois, Jérôme %T Non abelian Reidemeister torsion and volume form on the SU(2)-representation space of knot groups %J Annales de l'Institut Fourier %D 2005 %P 1685-1734 %V 55 %N 5 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2136/ %R 10.5802/aif.2136 %G en %F AIF_2005__55_5_1685_0
Dubois, Jérôme. Non abelian Reidemeister torsion and volume form on the SU(2)-representation space of knot groups. Annales de l'Institut Fourier, Tome 55 (2005) no. 5, pp. 1685-1734. doi : 10.5802/aif.2136. https://www.numdam.org/articles/10.5802/aif.2136/
[BZ] Finite Dehn surgery on knots, J. Amer. Math. Soc., Volume 9 (1996), pp. 1005-1050 | DOI | MR | Zbl
[CF] Introduction to Knot Theory, Springer Verlag, 1963 | MR | Zbl
[CS] Varieties of group representations and splittings of
[Du1] Étude d'une
[Du2] Torsion de Reidemeister non abélienne et forme volume sur l'espace des représentations du groupe d'un noeud (2003) (Thèse, Universit’e Blaise Pascal, http://te1.ccsd.cnrs.fr/documents/archives0/00/00/37/82)
[Du3] A volume form on the SU(2)-representation space of knot groups (2005) (to appear in Algebraic and Geometric Topology, arXiv:math.GT/0409529, http://arxiv.org/abs/math.GT/0409529)
[GM] Notes sur l'invariant de Casson des sphères d'homologie de dimension 3, Enseign. Math., Volume 38 (1992), pp. 233-290 | MR | Zbl
[He] An orientation for the SU(2)-representation space of knot groups, Topology and its Applications, Volume 127 (2003), pp. 175-197 | DOI | MR | Zbl
[HK] Deformations of dihedral representations, Proc. Amer. Math. Soc., Volume 125 (1997), pp. 3039-3047 | DOI | MR | Zbl
[Kl] Representations of knot groups in SU(2), Trans. Amer. Math. Soc., Volume 326 (1991), pp. 795-828 | DOI | MR | Zbl
[Li] A knot invariant via representation spaces, J. Diff. Geom., Volume 35 (1992), pp. 337-357 | MR | Zbl
[Mi1] A duality theorem for Reidemeister torsion, Ann. of Math., Volume 76 (1962), pp. 134-147 | MR | Zbl
[Mi2] Whitehead torsion, Bull. Amer. Math. Soc., Volume 72 (1966), pp. 358-426 | DOI | MR | Zbl
[Pa] Half-density volumes of representation spaces of some
[Po] Torsion de Reidemeister pour les variétés hyperboliques, Memoirs of the Amer. Math. Soc., Volume 128 (1997) no. 612 | MR | Zbl
[Re] Homotopieringen und Linsenräume, Abh. Math. Semin. Hamburg. Univ., Volume 11 (1935), pp. 102-109 | DOI | JFM | Zbl
[Tu2] Introduction to combinatorial Torsions, Birkhäuser, 2001 | MR | Zbl
[Tu3] Torsions of
[Tur1] Reidemeister torsion in knot theory (English version), Russian Math. Surveys, Volume 41 (1986), pp. 119-182 | MR | Zbl
[Wa] Algebraic
[We] Remarks on the cohomology of groups, Ann. of Math., Volume 80 (1964), pp. 149-157 | DOI | MR | Zbl
[Wi] On quantum gauge theories in two dimensions, Commun. Math. Phys., Volume 141 (1991), pp. 153-209 | DOI | MR | Zbl
- Twisted Alexander polynomials, chirality, and local deformations of hyperbolic 3-cone-manifolds, Annales mathématiques Blaise Pascal, Volume 30 (2023) no. 1, p. 75 | DOI:10.5802/ambp.416
- Infinitesimal gluing equations and the adjoint hyperbolic Reidemeister torsion, Tohoku Mathematical Journal, Volume 73 (2021) no. 4 | DOI:10.2748/tmj.20200828
- Twisted Alexander polynomials, character varieties and Reidemeister torsions of double branched covers, Topology and its Applications, Volume 204 (2016), p. 278 | DOI:10.1016/j.topol.2016.03.021
- On the twisted Alexander polynomial for metabelian representations intoSL2(C), Topology and its Applications, Volume 160 (2013) no. 13, p. 1760 | DOI:10.1016/j.topol.2013.07.006
- The Ponzano–Regge model, Classical and Quantum Gravity, Volume 26 (2009) no. 15, p. 155014 | DOI:10.1088/0264-9381/26/15/155014
- The volume conjecture and topological strings, Fortschritte der Physik, Volume 57 (2009) no. 9, p. 825 | DOI:10.1002/prop.200900067
- NON-ABELIAN REIDEMEISTER TORSION FOR TWIST KNOTS, Journal of Knot Theory and Its Ramifications, Volume 18 (2009) no. 03, p. 303 | DOI:10.1142/s0218216509006951
- Symmetry of Reidemeister torsion on SU2-representation spaces of knots, Topology and its Applications, Volume 156 (2009) no. 17, p. 2772 | DOI:10.1016/j.topol.2009.08.012
- Limit values of the non-acyclic Reidemeister torsion for knots, Algebraic Geometric Topology, Volume 7 (2007) no. 3, p. 1485 | DOI:10.2140/agt.2007.7.1485
- On the asymptotic expansion of the colored Jones polynomial for torus knots, Mathematische Annalen, Volume 339 (2007) no. 4, p. 757 | DOI:10.1007/s00208-007-0109-z
- A volume form on the SU(2)–representation space of knot groups, Algebraic Geometric Topology, Volume 6 (2006) no. 1, p. 373 | DOI:10.2140/agt.2006.6.373
- Non Abelian Twisted Reidemeister Torsion for Fibered Knots, Canadian Mathematical Bulletin, Volume 49 (2006) no. 1, p. 55 | DOI:10.4153/cmb-2006-006-0
Cité par 12 documents. Sources : Crossref