Etant donné un noeud dans la sphère tridimensionnelle et une représentation régulière de son groupe dans SU(2), on construit une forme torsion de Reidemeister non abélienne sur le premier groupe de cohomologie tordue de l’extérieur de . Cette forme torsion de Reidemeister permet de définir une forme volume sur l’espace de représentations de dans SU(2). D’un autre point de vue, en s’inspirant de la construction originale de l’invariant de Casson, on construit une forme volume naturelle sur l’espace de représentations de dans SU(2). On établit enfin que ces deux points de vue en apparence distincts produisent en fait le même invariant topologique de noeuds.
For a knot in the 3-sphere and a regular representation of its group into SU(2) we construct a non abelian Reidemeister torsion form on the first twisted cohomology group of the knot exterior. This non abelian Reidemeister torsion form provides a volume form on the SU(2)-representation space of . In another way, we construct using Casson’s original construction a natural volume form on the SU(2)-representation space of . Next, we compare these two apparently different points of view on the representation variety and finally prove that they produce the same topological knot.
Keywords: Knot groups, representation space, volume form, Reidemeister torsion, Casson invariant, adjoint representation, SU(2)
Mot clés : groupe de noeuds, espace de représentations, forme volume, torsion de Reidemeister, invariant de Casson, représentation adjointe, SU(2)
@article{AIF_2005__55_5_1685_0, author = {Dubois, J\'er\^ome}, title = {Non abelian {Reidemeister} torsion and volume form on the {SU(2)-representation} space of knot groups}, journal = {Annales de l'Institut Fourier}, pages = {1685--1734}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {5}, year = {2005}, doi = {10.5802/aif.2136}, mrnumber = {2172277}, zbl = {1077.57009}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2136/} }
TY - JOUR AU - Dubois, Jérôme TI - Non abelian Reidemeister torsion and volume form on the SU(2)-representation space of knot groups JO - Annales de l'Institut Fourier PY - 2005 SP - 1685 EP - 1734 VL - 55 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2136/ DO - 10.5802/aif.2136 LA - en ID - AIF_2005__55_5_1685_0 ER -
%0 Journal Article %A Dubois, Jérôme %T Non abelian Reidemeister torsion and volume form on the SU(2)-representation space of knot groups %J Annales de l'Institut Fourier %D 2005 %P 1685-1734 %V 55 %N 5 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2136/ %R 10.5802/aif.2136 %G en %F AIF_2005__55_5_1685_0
Dubois, Jérôme. Non abelian Reidemeister torsion and volume form on the SU(2)-representation space of knot groups. Annales de l'Institut Fourier, Tome 55 (2005) no. 5, pp. 1685-1734. doi : 10.5802/aif.2136. http://www.numdam.org/articles/10.5802/aif.2136/
[BZ] Finite Dehn surgery on knots, J. Amer. Math. Soc., Volume 9 (1996), pp. 1005-1050 | DOI | MR | Zbl
[CF] Introduction to Knot Theory, Springer Verlag, 1963 | MR | Zbl
[CS] Varieties of group representations and splittings of -manifolds, Ann. of Math., Volume 117 (1983), pp. 109-146 | DOI | MR | Zbl
[Du1] Étude d'une -forme volume sur l'espace de représentations du groupe d'un noeud dans SU2, C. R. Acad. Sci. Paris, Sér. I, Volume 336 (2003), pp. 641-646 | MR | Zbl
[Du2] Torsion de Reidemeister non abélienne et forme volume sur l'espace des représentations du groupe d'un noeud (2003) (Thèse, Universit’e Blaise Pascal, http://te1.ccsd.cnrs.fr/documents/archives0/00/00/37/82)
[Du3] A volume form on the SU(2)-representation space of knot groups (2005) (to appear in Algebraic and Geometric Topology, arXiv:math.GT/0409529, http://arxiv.org/abs/math.GT/0409529)
[GM] Notes sur l'invariant de Casson des sphères d'homologie de dimension 3, Enseign. Math., Volume 38 (1992), pp. 233-290 | MR | Zbl
[He] An orientation for the SU(2)-representation space of knot groups, Topology and its Applications, Volume 127 (2003), pp. 175-197 | DOI | MR | Zbl
[HK] Deformations of dihedral representations, Proc. Amer. Math. Soc., Volume 125 (1997), pp. 3039-3047 | DOI | MR | Zbl
[Kl] Representations of knot groups in SU(2), Trans. Amer. Math. Soc., Volume 326 (1991), pp. 795-828 | DOI | MR | Zbl
[Li] A knot invariant via representation spaces, J. Diff. Geom., Volume 35 (1992), pp. 337-357 | MR | Zbl
[Mi1] A duality theorem for Reidemeister torsion, Ann. of Math., Volume 76 (1962), pp. 134-147 | MR | Zbl
[Mi2] Whitehead torsion, Bull. Amer. Math. Soc., Volume 72 (1966), pp. 358-426 | DOI | MR | Zbl
[Pa] Half-density volumes of representation spaces of some -manifolds and their application, Duke Math. J., Volume 86 (1997), pp. 493-515 | DOI | MR | Zbl
[Po] Torsion de Reidemeister pour les variétés hyperboliques, Memoirs of the Amer. Math. Soc., Volume 128 (1997) no. 612 | MR | Zbl
[Re] Homotopieringen und Linsenräume, Abh. Math. Semin. Hamburg. Univ., Volume 11 (1935), pp. 102-109 | DOI | JFM | Zbl
[Tu2] Introduction to combinatorial Torsions, Birkhäuser, 2001 | MR | Zbl
[Tu3] Torsions of -dimensional Manifolds, Birkhäuser, 2002 | MR | Zbl
[Tur1] Reidemeister torsion in knot theory (English version), Russian Math. Surveys, Volume 41 (1986), pp. 119-182 | MR | Zbl
[Wa] Algebraic -theory of generalized free products, 1, Ann. of Math., Volume 108 (1978), pp. 135-204 | DOI | MR | Zbl
[We] Remarks on the cohomology of groups, Ann. of Math., Volume 80 (1964), pp. 149-157 | DOI | MR | Zbl
[Wi] On quantum gauge theories in two dimensions, Commun. Math. Phys., Volume 141 (1991), pp. 153-209 | DOI | MR | Zbl
Cité par Sources :