Holomorphic rank-2 vector bundles on non-Kähler elliptic surfaces
[Fibrés holomorphes de rang 2 sur des surfaces elliptiques non-kähleriennes]
Annales de l'Institut Fourier, Tome 55 (2005) no. 5, pp. 1659-1683.

Dans cet article, nous étudions l'existence de structures holomorphes pour les fibrés de rang 2 sur des surfaces elliptiques non-kähleriennes ; entre autres, nous donnons des conditions nécessaires et suffisantes pour l'existence de fibrés holomorphes de rang 2 sur des surfaces elliptiques non-kähleriennes.

In this paper, we consider the problem of determining which topological complex rank-2 vector bundles on non-Kähler elliptic surfaces admit holomorphic structures; in particular, we give necessary and sufficient conditions for the existence of holomorphic rank-2 vector bundles on non-{Kä}hler elliptic surfaces.

DOI : 10.5802/aif.2135
Classification : 14J60, 14D22, 14F05, 14J27, 32J15
Keywords: Non-Kähler surfaces, ellipic surfaces, holomorphic vector bundles
Mot clés : surfaces non-kähleriennes, surfaces elliptiques, fibrés vectoriels holomorphes
Brînzănescu, Vasile 1 ; Moraru, Ruxandra 

1 Institute of Mathematics Simion Stoilow, Romanian Academy, PO Box 1-764, RO-70700, Bucharest (Roumanie), University of Toronto, department of mathematics, 100 St George Street, Toronto, Ontario M5S 3G3 (Canada)
@article{AIF_2005__55_5_1659_0,
     author = {Br{\^\i}nz\u{a}nescu, Vasile and Moraru, Ruxandra},
     title = {Holomorphic rank-2 vector bundles on {non-K\"ahler} elliptic surfaces},
     journal = {Annales de l'Institut Fourier},
     pages = {1659--1683},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {55},
     number = {5},
     year = {2005},
     doi = {10.5802/aif.2135},
     mrnumber = {2172276},
     zbl = {1095.14039},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2135/}
}
TY  - JOUR
AU  - Brînzănescu, Vasile
AU  - Moraru, Ruxandra
TI  - Holomorphic rank-2 vector bundles on non-Kähler elliptic surfaces
JO  - Annales de l'Institut Fourier
PY  - 2005
SP  - 1659
EP  - 1683
VL  - 55
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2135/
DO  - 10.5802/aif.2135
LA  - en
ID  - AIF_2005__55_5_1659_0
ER  - 
%0 Journal Article
%A Brînzănescu, Vasile
%A Moraru, Ruxandra
%T Holomorphic rank-2 vector bundles on non-Kähler elliptic surfaces
%J Annales de l'Institut Fourier
%D 2005
%P 1659-1683
%V 55
%N 5
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.2135/
%R 10.5802/aif.2135
%G en
%F AIF_2005__55_5_1659_0
Brînzănescu, Vasile; Moraru, Ruxandra. Holomorphic rank-2 vector bundles on non-Kähler elliptic surfaces. Annales de l'Institut Fourier, Tome 55 (2005) no. 5, pp. 1659-1683. doi : 10.5802/aif.2135. http://www.numdam.org/articles/10.5802/aif.2135/

[ABr] M. Aprodu; V. Br{\^\i}nz{\"a}nescu On the holomorphic rank-2 vector bundles with trivial discriminant over non-Kähler elliptic bundles to appear in J. Math. Kyoto Univ. 42 (2002) no. 4, (2003) 617-623 | MR | Zbl

[ABrTo] M. Aprodu; V. Br{\^\i}nz{\"a}nescu ; M. Toma Holomorphic vector bundles on primary Kodaira surfaces, Math. Z., Volume 242 (2002), pp. 63-73 | DOI | MR | Zbl

[ATo] M. Aprodu; M. Toma Une note sur les fibr\' es holomorphes non-filtrables (2002) (Preprint) | Zbl

[BaL] C. Br{\^\i}nz{\"a}nescu ; J. Le; Potier Sur l'existence des fibrés vectoriels holomorphes sur les surfaces non-algébriques, J. Reine Angew. Math., Volume 378 (1987), pp. 1-31 | EuDML | MR | Zbl

[BBDG] K. Becker; M. Becker; K. Dasgupta; P. S. Green Compactification of heterotic theory on non-Kähler complex manifolds: I (preprint arXiv:hep-th/0301161)

[BH] P. J. Braam; J. Hurtubise Instantons on Hopf surfaces and monopoles on solid tori, J. Reine Angew. Math., Volume 400 (1989), pp. 146-172 | EuDML | MR | Zbl

[Bh] N. P. Buchdahl Hermitian-Einstein connections and stable vector bundles over compact complex surfaces, Math. Ann., Volume 280 (1988), pp. 625-648 | DOI | EuDML | MR | Zbl

[BJPS] M. Bershadsky; A. Johansen; T. Pantev; V. Sadov On four-dimentional compactifications of F-theory, Nuclear Phys. B, Volume 505 (1997) no. 1-2, pp. 165-201 | DOI | MR | Zbl

[BPV] W. Barth; C. Peters; A. Van; De; Ven Compact complex surfaces, Springer-Verlag, Berlin-Heidelberg-New York, 1984 | Zbl

[Br1] V. Br{\^\i}nz{\"a}nescu N\' eron-Severi group for non-algebraic elliptic surfaces I: elliptic bundle case, Manuscripta Math. 79 (1993) 187-195; II: non-Kählerian case, Manuscripta Math. 84 (1994) 415-420; III, Rev. Roumaine Math. Pures Appl. 43(1-2) (1998), pp. 89-95 | Zbl

[Br2] V. Br{\^\i}nz{\"a}nescu The Picard group of a primary Kodaira surface, Math. Ann., Volume 296 (1993), pp. 725-738 | DOI | MR | Zbl

[Br3] V. Br{\^\i}nz{\"a}nescu Holomorphic vector bundles over compact complex surfaces, Lecture Notes in Mathematics, 1624, Springer, 1996 | MR | Zbl

[Br4] V. Br{\^\i}nz{\"a}nescu Double covers and vector bundles (An. Stiint. Univ. Ovidius Constanta Ser. Mat.), Volume 9 (2001), pp. 21-26 | Zbl

[BrF] V. Br{\^\i}nz{\"a}nescu ; P. Flondor Holomorphic 2-vector bundles on non-algebraic 2-tori, J. Reine Angew. Math., Volume 363 (1985), pp. 47-58 | MR | Zbl

[BrMo1] V. Br{\^\i}nz{\"a}nescu ; R. Moraru Twisted Fourier-Mukai transforms and bundles on non-Kähler elliptic surfaces (to appear in Math. Res. Lett.; preprint arXiv:math.AG/0309031)

[BrMo2] V. Br{\^\i}nz{\"a}nescu ; R. Moraru Stable bundles on non-Kähler elliptic surfaces, Comm. Math. Phys., Volume 254 (2005), pp. 565-580 | DOI | MR | Zbl

[BrU] V. Br{\^\i}nz{\"a}nescu ; K. Ueno Néron-Severi group for torus quasi bundles over curves., Moduli of vector bundles (Sanda 1994; Kyoto, 1994) (Lecture Notes in Pure and Applied Mathematics), Volume 179 (1996), pp. 11-32 | Zbl

[CCDLM2] G. L. Cardoso; G. Curio; G. Dall'Agata; D. Lüst; P. Manousselis; G. Zoupanos Non-Kähler string backgrounds and their five torsion classes (preprint arXiv:hep-th/0211118, http://arxiv.org/abs/hep-th/0211118) | MR

[D] R. Donagi Principal bundles on elliptic fibrations, Asian J. Math., Volume 1 (1997) no. 2, pp. 214-223 | MR | Zbl

[DOPW1] R. Donagi; B. Ovrut; T. Pantev; D. Waldram Standard-model bundles, Adv. Theor. Math. Phys., Volume 5 (2001) no. 3, pp. 563-615 | MR | Zbl

[DOPW2] R. Donagi; B. Ovrut; T. Pantev; D. Waldram Standard models from heterotic M-theory, Adv. Theor. Math. Phys., Volume 5 (2001) no. 1, pp. 93-137 | MR | Zbl

[ElFo] G. Elencwajg; O. Forster Vector bundles on manifolds without divisors and a theorem of deformation, Ann. Inst. Fourier, Volume 32 (1982) no. 4, pp. 25-51 | DOI | Numdam | MR | Zbl

[F1] R. Friedman Rank two vector bundles over regular elliptic surfaces, Invent. Math., Volume 96 (1989), pp. 283-332 | DOI | MR | Zbl

[F2] R. Friedman Algebraic surfaces and holomorphic vector bundles, Universitext, Springer-Verlag, 1998 | Zbl

[FM] R. Friedman; J. W. Morgan Smooth Four-Manifolds and Complex Surfaces, Springer-Verlag, 1994 | Zbl

[FMW] R. Friedman; J. Morgan; E. Witten Vector bundles over elliptic fibrations, J. Algebraic Geom., Volume 2 (1999), pp. 279-401 | MR | Zbl

[GP] E. Goldstein; S. Prokushkin Geometric model for complex non-Kähler manifolds with SU(3) structure (preprint arXiv:hep-th/0212307, http://arxiv.org/abs/hep-th/0212307) | Zbl

[Kob] S. Kobayashi Differential geometry of complex vector bundles, Princeton University Press, 1987 | MR | Zbl

[Kod] K. Kodaira On the structure of compact complex analytic surfaces I, Amer. J. Math., Volume 86 (1964), pp. 751-798 | DOI | MR | Zbl

[LeP] J. Le Potier Fibrés vectoriels sur les surfaces K3, Séminaire Lelong-Dolbeault-Skoda, 1028, Springer, Berlin, 1983 | MR | Zbl

[Mo] R. Moraru Integrable systems associated to a Hopf surface, Canad. J. Math., Volume 55 (2003) no. 3, pp. 609-635 | DOI | MR | Zbl

[S] R. L. E. Schwarzenberger Vector bundles on algebraic surfaces, Proc. London Math. Soc., Volume 3 (1961), pp. 601-622 | MR | Zbl

[T] A. Teleman Moduli spaces of stable bundles on non-K\" ahler elliptic fibre bundles over curves, Expo. Math., Volume 16 (1998), pp. 193-248 | MR | Zbl

[To] M. Toma Stable bundle with small c 2 over 2-dimensional complex tori, Math. Z., Volume 232 (1999), pp. 511-525 | DOI | MR | Zbl

[TTo] A. Teleman; M. Toma Holomorphic vector bundles on non-algebraic surfaces, C. R. Acad. Sci. Paris, Volume 334 (2002), pp. 1-6 | MR | Zbl

Cité par Sources :